Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 889: 164333, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209741

RESUMO

Four sites in the western sector of Lipari Island with still active hydrothermal activity are here considered. The petrography (mesoscopic observations and XRPD) and geochemistry (major, minor and trace elements chemistry) of ten representative and extremely altered volcanic rocks were characterized. Two types of parageneses of altered rocks are discriminable, one rich in silicate phases (opal/cristobalite, montmorillonite, kaolinite, alunite and hematite) and one in sulphates (gypsum, plus minor amounts of anhydrite or bassanite). The altered silicate-rich rocks are rich in SiO2, Al2O3, Fe2O3 and H2O, and depleted in CaO, MgO, K2O and Na2O, while the sulphate-rich ones are extremely enriched in CaO and SO4 in comparison with local unaltered volcanic rocks. The content of many incompatible elements is similar in altered silicate-rich rocks and lower in sulphate-rich ones with respect to the pristine volcanic rocks; conversely, almost all REEs are markedly enriched in silicate-rich rocks and heavy REEs are enriched in sulphate-rich altered rocks compared to unaltered volcanic rocks. Reaction path modelling of basaltic andesite dissolution in local steam condensate predicts the production of amorphous-silica, anhydrite, goethite, and kaolinite (or smectites and saponites) as stable secondary minerals and alunite, jarosite, and jurbanite as ephemeral minerals. Considering possible post-depositional reactions and admitting that the presence of two distinct parageneses is apparent, since gypsum is prone to form large crystals, it can be concluded that there is an excellent agreement between the alteration minerals occurring in nature and those predicted by geochemical modelling. Consequently, the modelled process is the main responsible for the production of the advanced argillic alteration assemblage of "Cave di Caolino" on Lipari Island. Since rock alteration is sustained by the H2SO4 solution produced by hydrothermal steam condensation, there is no need to invoke the involvement of SO2-HCl-HF-bearing magmatic fluids, in line with the absence of fluoride minerals.


Assuntos
Sulfato de Cálcio , Caulim , Dióxido de Silício , Vapor , Ilhas , Silicatos/química , Minerais/análise , Sulfatos
2.
Sci Total Environ ; 740: 140133, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563880

RESUMO

Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.

3.
Sci Total Environ ; 660: 1459-1471, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743939

RESUMO

Reaction path modelling of serpentinite dissolution in meteoric water was performed, varying Fe2O3/(FeO + Fe2O3) weight ratios of serpentine and reproducing the analytical concentrations of relevant solutes, including Cr(VI), in the Mg-HCO3 groundwaters hosted in the ophiolitic aquifers of Italy. The occurrence of geogenic Cr(VI) in these groundwaters appears to be potentially controlled by the oxidation of trivalent Cr to the hexavalent redox state, driven by the reduction of trivalent Fe to the divalent redox state. In fact, trivalent Fe is the only oxidant present in suitable amounts in serpentinite rock, and even serpentine contains a high content of trivalent Fe as proven by recent studies. In contrast, the generally accepted hypothesis that geogenic Cr(VI) in waters interacting with serpentinites is driven by the reduction of trivalent and tetravalent Mn is questionable, since serpentinite rock has a low Mn content and it is necessary to invoke adsorption of trivalent Cr ions onto the surface of Mn oxides, which are oxidised as a surface complex to hexavalent Cr. Moreover, Mn oxides are present in the aqueous solution as suspended particles or in rocks as coatings or nodules.

4.
Chemosphere ; 219: 896-913, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30572239

RESUMO

Mercury (Hg) is a widespread, highly toxic persistent pollutant with adverse health effects on humans. So far, concentrations below the method detection limit have always been reported by studies on the concentration of mercury in bottled water when determined using instrumental analytical methods. These are often very expensive and are unaffordable for many laboratories. In this work, a less expensive method based on cold vapour atomic fluorescence spectrometry has been employed to determine total mercury (HgT) concentrations in bottled natural mineral waters. In all, 255 waters representing 164 different typologies were analysed. They came from 136 springs located in 18 Italian regions. In all samples, HgT concentrations were found in the range of sub-nanogram to a few nanograms per litre, well below the National and European regulatory limit (1 µg L-1). Differences in HgT concentrations were related not only to the environmental characteristics of the springs but also to the extent and impact of human activities. Higher concentrations were found in waters coming from regions with former mining and/or natural thermal and volcanic activity. These data allowed us to estimate the mercury intake by population (adults, children and toddlers) from drinkable mineral waters consumption. The mean mercury daily intake was found to be remarkably lower, not only than the provisional tolerable value (1 µg L-1 according to European and Italian legislation) but also than the estimated provisional tolerable weekly intake (PTWI) value (4 µg kg-1 body weight) recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).


Assuntos
Água Potável/química , Poluentes Ambientais/química , Contaminação de Alimentos/análise , Mercúrio/química , Humanos , Itália
5.
Chemosphere ; 150: 97-108, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891362

RESUMO

The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations.


Assuntos
Radiação de Fundo , Sedimentos Geológicos/química , Monitoramento de Radiação/métodos , Radioisótopos/análise , Poluentes Radioativos do Solo/análise , Solo/química , Clima , Raios gama , Itália , Espectrometria gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...