Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Total Environ ; 892: 164752, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315593

RESUMO

Straw helimulching was applied to an area with a high soil erosion risk one month after the Navalacruz megafire (Iberian Central System, Ávila, Spain) to mitigate soil erosion and to maintain soil quality. To determine whether the soil fungal community, which is key to soil and vegetation recovery after fire, is altered by straw mulching, we examined the effect of helimulching one year after its application. Three hillside zones were chosen with two treatments in each zone (mulched and non-mulched plots), with three replicates of each treatment. Chemical and genomic DNA analyses of soil samples from mulched and non-mulched plots were performed to assess the soil characteristics and the soil fungal community composition and abundance. The total fungal operational taxonomic unit richness and abundance did not differ between treatments. However, there was an increase in the richness of litter saprotrophs, plant pathogens and wood saprotrophs associated with the application of straw mulch. The total fungal composition of mulched and non-mulched plots differed significantly. Fungal composition at the phylum level correlated with the soil potassium content and marginally with the pH and phosphorus content. The application of mulch promoted the dominance of saprotrophic functional groups. Fungal composition according to guilds was also significantly different between treatments. As conclusion, the application of mulch could mean a faster recovery of saprotrophic functional groups that will be responsible for decomposing the available dead fine fuel.


Assuntos
Incêndios , Micobioma , Incêndios Florestais , Ecossistema , Solo/química , Microbiologia do Solo
3.
Commun Biol ; 6(1): 47, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639596

RESUMO

Previous attempts to quantify tree abundance at global scale have largely neglected the role of local competition in modulating the influence of climate and soils on tree density. Here, we evaluated whether mean tree size in the world's natural forests alters the effect of global productivity on tree density. In doing so, we gathered a vast set of forest inventories including >3000 sampling plots from 23 well-conserved areas worldwide to encompass (as much as possible) the main forest biomes on Earth. We evidence that latitudinal productivity patterns of tree density become evident as large trees become dominant. Global estimates of tree abundance should, therefore, consider dependencies of latitudinal sources of variability on local biotic influences to avoid underestimating the number of trees on Earth and to properly evaluate the functional and social consequences.


Assuntos
Florestas , Árvores , Ecossistema , Clima , Mudança Climática
4.
Am J Perinatol ; 40(15): 1644-1650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-34775581

RESUMO

OBJECTIVE: This study aimed to compare the effectiveness of sustained uterine compression versus uterine massage in reducing blood loos after a vaginal delivery. STUDY DESIGN: This was a prospective randomized trial conducted at the American University of Beirut Medical Center (AUBMC) between October 2015 and October 2017. Inclusion criteria were women with a singleton pregnancy at ≥36 weeks of gestation, with less than three previous deliveries, who were candidates for vaginal delivery. Participants were randomized into two groups, a sustained uterine compression group (group 1) and a uterine massage group (group 2). Incidence of postpartum hemorrhage (blood loss of ≥500 mL) was the primary outcome. We assumed that the incidence of postpartum hemorrhage at our institution is similar to previously published studies. A total of 545 women were required in each arm to detect a reduction from 9.6 to 4.8% in the primary outcome (50% reduction) with a one-sided α of 0.05 and a power of 80%. Factoring in a 10% dropout rate. Secondary outcomes were admission to intensive care unit (ICU), postpartum complications, drop in hemoglobin, duration of hospital stay, maternal pain, use of uterotonics, or of surgical procedure for postpartum hemorrhage. RESULTS: A total of 550 pregnant women were recruited, 273 in group 1 and 277 in group 2. There was no statistically significant difference in baseline characteristics between the two groups. Type of anesthesia, rate of episiotomy, lacerations, and mean birth weight were also equal between the groups. Incidence of the primary outcome was not different between the two groups (group 1: 15.5%, group 2: 15.4%; p = 0.98). There was no statistically significant difference in any of the secondary outcomes between the two groups, including drop in hemoglobin (p = 0.79). CONCLUSION: There was no difference in blood loss between sustained uterine compression and uterine massage after vaginal delivery. KEY POINTS: · Transabdominal uterine compression and uterine massage are appropriate to prevent postpartum hemorrhage.. · No significant difference in blood loss or maternal discomfort observed between the two techniques.. · Both methods are equally effective and either one can be used based on provider preference..


Assuntos
Hemorragia Pós-Parto , Feminino , Gravidez , Humanos , Masculino , Hemorragia Pós-Parto/prevenção & controle , Estudos Prospectivos , Parto Obstétrico/efeitos adversos , Massagem/métodos , Hemoglobinas
5.
PLoS One ; 15(11): e0242484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206713

RESUMO

Wildfires have increased in size and frequency in recent decades in many biomes, but have they also become more severe? This question remains under-examined despite fire severity being a critical aspect of fire regimes that indicates fire impacts on ecosystem attributes and associated post-fire recovery. We conducted a retrospective analysis of wildfires larger than 1000 ha in south-eastern Australia to examine the extent and spatial pattern of high-severity burned areas between 1987 and 2017. High-severity maps were generated from Landsat remote sensing imagery. Total and proportional high-severity burned area increased through time. The number of high-severity patches per year remained unchanged but variability in patch size increased, and patches became more aggregated and more irregular in shape. Our results confirm that wildfires in southern Australia have become more severe. This shift in fire regime may have critical consequences for ecosystem dynamics, as fire-adapted temperate forests are more likely to be burned at high severities relative to historical ranges, a trend that seems set to continue under projections of a hotter, drier climate in south-eastern Australia.


Assuntos
Incêndios Florestais/estatística & dados numéricos , Austrália , Clima , Conservação dos Recursos Naturais , Ecossistema , Incêndios , Florestas , Humanos , Estudos Retrospectivos , Incêndios Florestais/economia
6.
Nat Commun ; 11(1): 5635, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159062

RESUMO

More tree species can increase the carbon storage capacity of forests (here referred to as the more species hypothesis) through increased tree productivity and tree abundance resulting from complementarity, but they can also be the consequence of increased tree abundance through increased available energy (more individuals hypothesis). To test these two contrasting hypotheses, we analyse the most plausible pathways in the richness-abundance relationship and its stability along global climatic gradients. We show that positive effect of species richness on tree abundance only prevails in eight of the twenty-three forest regions considered in this study. In the other forest regions, any benefit from having more species is just as likely (9 regions) or even less likely (6 regions) than the effects of having more individuals. We demonstrate that diversity effects prevail in the most productive environments, and abundance effects become dominant towards the most limiting conditions. These findings can contribute to refining cost-effective mitigation strategies based on fostering carbon storage through increased tree diversity. Specifically, in less productive environments, mitigation measures should promote abundance of locally adapted and stress tolerant tree species instead of increasing species richness.


Assuntos
Clima , Ecossistema , Árvores/crescimento & desenvolvimento , Biodiversidade , Carbono/metabolismo , Florestas , Árvores/classificação , Árvores/metabolismo
7.
Nat Ecol Evol ; 4(1): 40-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844189

RESUMO

According to the competitive exclusion principle, species with low competitive abilities should be excluded by more efficient competitors; yet, they generally remain as rare species. Here, we describe the positive and negative spatial association networks of 326 disparate assemblages, showing a general organization pattern that simultaneously supports the primacy of competition and the persistence of rare species. Abundant species monopolize negative associations in about 90% of the assemblages. On the other hand, rare species are mostly involved in positive associations, forming small network modules. Simulations suggest that positive interactions among rare species and microhabitat preferences are the most probable mechanisms underpinning this pattern and rare species persistence. The consistent results across taxa and geography suggest a general explanation for the maintenance of biodiversity in competitive environments.


Assuntos
Biodiversidade , Ecologia , Geografia
8.
Sci Total Environ ; 689: 1104-1114, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31466150

RESUMO

Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and accurate forest monitoring systems are needed to provide early warning of potential declines in forest condition. To address that need, state-of-the-art simulations models were used to evaluate the utility of C-, L- and P-band synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak and coniferous forests in Romania. The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated the C-band signal by <1 dB which may be insufficient for a meaningful retrieval of drought effects on forest. C-band sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. The simulation results may be applicable to forests outside of Romania since the forests types used in the study have similar morphological characteristics to forests elsewhere in Europe.


Assuntos
Monitoramento Ambiental/métodos , Florestas , Radar , Romênia
9.
Biol Rev Camb Philos Soc ; 94(4): 1477-1501, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30974048

RESUMO

Non-native tree (NNT) species have been transported worldwide to create or enhance services that are fundamental for human well-being, such as timber provision, erosion control or ornamental value; yet NNTs can also produce undesired effects, such as fire proneness or pollen allergenicity. Despite the variety of effects that NNTs have on multiple ecosystem services, a global quantitative assessment of their costs and benefits is still lacking. Such information is critical for decision-making, management and sustainable exploitation of NNTs. We present here a global assessment of NNT effects on the three main categories of ecosystem services, including regulating (RES), provisioning (PES) and cultural services (CES), and on an ecosystem disservice (EDS), i.e. pollen allergenicity. By searching the scientific literature, country forestry reports, and social media, we compiled a global data set of 1683 case studies from over 125 NNT species, covering 44 countries, all continents but Antarctica, and seven biomes. Using different meta-analysis techniques, we found that, while NNTs increase most RES (e.g. climate regulation, soil erosion control, fertility and formation), they decrease PES (e.g. NNTs contribute less than native trees to global timber provision). Also, they have different effects on CES (e.g. increase aesthetic values but decrease scientific interest), and no effect on the EDS considered. NNT effects on each ecosystem (dis)service showed a strong context dependency, varying across NNT types, biomes and socio-economic conditions. For instance, some RES are increased more by NNTs able to fix atmospheric nitrogen, and when the ecosystem is located in low-latitude biomes; some CES are increased more by NNTs in less-wealthy countries or in countries with higher gross domestic products. The effects of NNTs on several ecosystem (dis)services exhibited some synergies (e.g. among soil fertility, soil formation and climate regulation or between aesthetic values and pollen allergenicity), but also trade-offs (e.g. between fire regulation and soil erosion control). Our analyses provide a quantitative understanding of the complex synergies, trade-offs and context dependencies involved for the effects of NNTs that is essential for attaining a sustained provision of ecosystem services.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas , Árvores/classificação , Mudança Climática , Árvores/fisiologia
10.
Ecol Appl ; 27(8): 2497-2513, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921765

RESUMO

The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Florestas , Árvores/química , Incêndios Florestais , Vitória
11.
PLoS One ; 9(12): e115371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25532130

RESUMO

Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be also involved in this process.


Assuntos
Agricultura , Quercus/crescimento & desenvolvimento , Sementes , Solo/química , Ecossistema , Dinâmica Populacional , Fatores de Tempo
12.
Ecol Appl ; 24(5): 976-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25154091

RESUMO

Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless, negative impacts on CWD of repeated low-intensity prescribed fires could be lessened by fire intervals of 10 rather than three years (to decrease losses of decayed CWD), and fires in moist rather than dry conditions (to conserve large CWD).


Assuntos
Incêndios , Florestas , Austrália , Ecossistema , Árvores , Madeira
13.
Int J Biometeorol ; 58(4): 427-442, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24170140

RESUMO

Growth is one of the most important phenological cycles in a plant's life. Higher growth rates increase the competitive ability, survival and recruitment and can provide a measure of a plant's adaptive capacity to climate variability and change. This study identified the growth relationship of six Eucalyptus species to variations in temperature, soil moisture availability, photoperiod length and air humidity over 12 months. The six species represent two naturally co-occurring groups of three species each representing warm-dry and the cool-moist sclerophyll forests, respectively. Warm-dry eucalypts were found to be more tolerant of higher temperatures and lower air humidity than the cool-moist eucalypts. Within groups, species-specific responses were detected with Eucalyptus microcarpa having the widest phenological niche of the warm-dry species, exhibiting greater resistance to high temperature and lower air humidity. Temperature dependent photoperiodic responses were exhibited by all the species except Eucalyptus tricarpa and Eucalyptus sieberi, which were able to maintain growth as photoperiod shortened but temperature requirements were fulfilled. Eucalyptus obliqua exhibited a flexible growth rate and tolerance to moisture limitation which enables it to maintain its growth rate as water availability changes. The wider temperature niche exhibited by E. sieberi compared with E. obliqua and Eucalyptus radiata may improve its competitive ability over these species where winters are warm and moisture does not limit growth. With climate change expected to result in warmer and drier conditions in south-east Australia, the findings of this study suggest all cool-moist species will likely suffer negative effects on growth while the warm-dry species may still maintain current growth rates. Our findings highlight that climate driven shifts in growth phenology will likely occur as climate changes and this may facilitate changes in tree communities by altering inter-specific competition.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Adaptação Fisiológica , Austrália , Umidade , Fotoperíodo , Solo/química , Especificidade da Espécie , Temperatura , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...