Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Anim Biosci ; 12: 91-112, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37988633

RESUMO

Cloning as it relates to the animal kingdom generally refers to the production of genetically identical individuals. Because cloning is increasingly the subject of renewed attention as a tool for rescuing endangered or extinct species, it seems timely to dissect the role of the numerous reproductive techniques encompassed by this term in animal species conservation. Although cloning is typically associated with somatic cell nuclear transfer, the recent advent of additional techniques that allow genome replication without genetic recombination demands that the use of induced pluripotent stem cells to generate gametes or embryos, as well as older methods such as embryo splitting, all be included in this discussion. Additionally, the phenomenon of natural cloning (e.g., a subset of fish, birds, invertebrates, and reptilian species that reproduce via parthenogenesis) must also be pointed out. Beyond the biology of these techniques are practical considerations and the ethics of using cloning and associated procedures in endangered or extinct species. All of these must be examined in concert to determine whether cloning has a place in species conservation. Therefore, we synthesize progress in cloning and associated techniques and dissect the practical and ethical aspects of these methods as they pertain to endangered species conservation.


Assuntos
Clonagem de Organismos , Espécies em Perigo de Extinção , Animais , Clonagem de Organismos/veterinária , Clonagem de Organismos/métodos , Técnicas de Transferência Nuclear/veterinária , Peixes/genética , Clonagem Molecular
2.
Commun Biol ; 6(1): 1049, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848538

RESUMO

The northern white rhinoceros is functionally extinct with only two females left. Establishing methods to culture ovarian tissues, follicles, and oocytes to generate eggs will support conservation efforts using in vitro embryo production. To the best of our knowledge, this is the first description of the structure and molecular signature of any rhinoceros, more specifically, we describe the neonatal and adult southern white rhinoceros (Ceratotherium simum simum) ovary; the closest relation of the northern white rhinoceros. Interestingly, all ovaries contain follicles despite advanced age. Analysis of the neonate reveals a population of cells molecularly characterised as mitotically active, pluripotent with germ cell properties. These results indicate that unusually, the neonatal ovary still contains oogonia in germ cell nests at birth, providing an opportunity for fertility preservation. Therefore, utilising ovaries from stillborn and adult rhinoceros can provide cells for advanced assisted reproductive technologies and investigating the neonatal ovaries of other endangered species is crucial for conservation.


Assuntos
Oogônios , Ovário , Animais , Feminino , Oócitos , Espécies em Perigo de Extinção , Perissodáctilos
3.
Biol Rev Camb Philos Soc ; 98(4): 1225-1249, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37016502

RESUMO

The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.


Assuntos
Espécies em Perigo de Extinção , Técnicas de Transferência Nuclear , Animais , Humanos , Clonagem de Organismos/métodos , Vertebrados , Mamíferos , Embrião de Mamíferos
4.
Reprod Fertil ; 3(3): 198-206, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001349

RESUMO

Abstract: Mitochondrial quality is implicated as a contributor to declining fertility with aging. We investigated mitochondrial transcripts in oocytes and their associated cumulus cells from mice of different ages using RNA-seq. Mice aged 3 weeks, 9 weeks, and 1 year were superovulated, and 48 h later, oocyte cumulus complexes were collected by follicle puncture. We did not detect any major differences that could be attributed to aging. However, mitochondrial RNA transcripts which deviated from the consensus sequence were found at a higher frequency in cumulus cells than in their corresponding oocyte. Previous investigations have shown that variation in the sequence of mtRNA transcripts is substantial, and at least some of this can be accounted for by post-transcriptional modifications which impact base calling during sequencing. Our data would be consistent with either less post-transcriptional modification in mitochondrial RNA from oocytes than cumulus cells or with lower mtDNA mutational load. Lay summary: Women become less fertile as they age. Shortage of energy contributes to this, caused by a decline in the quality of mitochondria (the powerhouses of the cell) in the egg. Genes are the blueprint for the cell. They are made of DNA which is copied into an RNA message, or instructions, for making proteins. We counted differences in the RNA message of developing eggs and the cells that support them during development (cumulus cells). We compared the number of these differences in mice of different ages. These age groups represent mice had not reached puberty, those of prime reproductive age, and old mothers. We did not find any differences linked to the age of the mice. However, we did find differences between the egg and the cumulus cells. In most cases, there were lower levels of mutations in eggs than there were in cumulus cells.


Assuntos
Oócitos , Folículo Ovariano , Feminino , Animais , Camundongos , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Oócitos/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA/genética , RNA/metabolismo
5.
Reprod Fertil ; 3(3): R121-R146, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35928671

RESUMO

Biodiversity is defined as the presence of a variety of living organisms on the Earth that is essential for human survival. However, anthropogenic activities are causing the sixth mass extinction, threatening even our own species. For many animals, dwindling numbers are becoming fragmented populations with low genetic diversity, threatening long-term species viability. With extinction rates 1000-10,000 times greater than natural, ex situ and in situ conservation programmes need additional support to save species. The indefinite storage of cryopreserved (-196°C) viable cells and tissues (cryobanking), followed by assisted or advanced assisted reproductive technology (ART: utilisation of oocytes and spermatozoa to generate offspring; aART: utilisation of somatic cell genetic material to generate offspring), may be the only hope for species' long-term survival. As such, cryobanking should be considered a necessity for all future conservation strategies. Following cryopreservation, ART/aART can be used to reinstate lost genetics back into a population, resurrecting biodiversity. However, for this to be successful, species-specific protocol optimisation and increased knowledge of basic biology for many taxa are required. Current ART/aART is primarily focused on mammalian taxa; however, this needs to be extended to all, including to some of the most endangered species: amphibians. Gamete, reproductive tissue and somatic cell cryobanking can fill the gap between losing genetic diversity today and future technological developments. This review explores species prioritisation for cryobanking and the successes and challenges of cryopreservation and multiple ARTs/aARTs. We here discuss the value of cryobanking before more species are lost and the potential of advanced reproductive technologies not only to halt but also to reverse biodiversity loss. Lay summary: The world is undergoing its sixth mass extinction; however, unlike previous events, the latest is caused by human activities and is resulting in the largest loss of biodiversity (all living things on Earth) for 65 million years. With an extinction rate 1000-10,000-fold greater than natural, this catastrophic decline in biodiversity is threatening our own survival. As the number of individuals within a species declines, genetic diversity reduces, threatening their long-term existence. In this review, the authors summarise approaches to indefinitely preserve living cells and tissues at low temperatures (cryobanking) and the technologies required to resurrect biodiversity. In the future when appropriate techniques become available, these living samples can be thawed and used to reinstate genetic diversity and produce live young ones of endangered species, enabling their long-term survival. The successes and challenges of genome resource cryopreservation are discussed to enable a move towards a future of stable biodiversity.


Assuntos
Bancos de Espécimes Biológicos , Conservação dos Recursos Naturais , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Masculino , Mamíferos , Técnicas de Reprodução Assistida
6.
PLoS Genet ; 17(7): e1009331, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288907

RESUMO

Clinical mastitis (CM) is an inflammatory disease occurring in the mammary glands of lactating cows. CM is under genetic control, and a prominent CM resistance QTL located on chromosome 6 was reported in various dairy cattle breeds. Nevertheless, the biological mechanism underpinning this QTL has been lacking. Herein, we mapped, fine-mapped, and discovered the putative causal variant underlying this CM resistance QTL in the Dutch dairy cattle population. We identified a ~12 kb multi-allelic copy number variant (CNV), that is in perfect linkage disequilibrium with a lead SNP, as a promising candidate variant. By implementing a fine-mapping and through expression QTL mapping, we showed that the group-specific component gene (GC), a gene encoding a vitamin D binding protein, is an excellent candidate causal gene for the QTL. The multiplicated alleles are associated with increased GC expression and low CM resistance. Ample evidence from functional genomics data supports the presence of an enhancer within this CNV, which would exert cis-regulatory effect on GC. We observed that strong positive selection swept the region near the CNV, and haplotypes associated with the multiplicated allele were strongly selected for. Moreover, the multiplicated allele showed pleiotropic effects for increased milk yield and reduced fertility, hinting that a shared underlying biology for these effects may revolve around the vitamin D pathway. These findings together suggest a putative causal variant of a CM resistance QTL, where a cis-regulatory element located within a CNV can alter gene expression and affect multiple economically important traits.


Assuntos
Elementos Facilitadores Genéticos , Mastite Bovina/genética , Proteína de Ligação a Vitamina D/genética , Animais , Bovinos , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Haplótipos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
7.
Theriogenology ; 169: 76-88, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940218

RESUMO

The ongoing mass extinction of animal species at an unprecedented rate is largely caused by human activities. Progressive habitat destruction and fragmentation is resulting in accelerated loss of biodiversity on a global scale. Over decades, captive breeding programs of non-domestic species were characterized by efforts to optimize species-specific husbandry, to increase studbook-based animal exchange, and to improve enclosure designs. To counter the ongoing dramatic loss of biodiversity, new approaches are warranted. Recently, new ideas, particularly the application of assisted reproduction technologies (ART), have been incorporated into classical zoo breeding programs. These technologies include semen and oocyte collection, artificial insemination, and in-vitro embryo generation. More futuristic ideas of advanced ART (aART) implement recent advances in biotechnology and stem-cell related approaches such as cloning, inner cell mass transfer (ICM), and the stem-cell-associated techniques (SCAT) for the generation of gametes and ultimately embryos of highly endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni) of which only two female individuals are left. Both, ART and aART greatly depend on and benefit from the rapidly evolving cryopreservation techniques and biobanking not only of genetic, but also of viable cellular materials suitable for the generation of induced pluripotent stem cells (iPSC). The availability of cryopreserved materials bridges gaps in time and space, thereby optimizing the available genetic variability and enhancing the chance to restore viable populations.


Assuntos
Bancos de Espécimes Biológicos , Espécies em Perigo de Extinção , Animais , Biodiversidade , Feminino , Perissodáctilos , Técnicas de Reprodução Assistida/veterinária
8.
Cryobiology ; 85: 87-94, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218644

RESUMO

Vitrification reduces the developmental competence of porcine immature oocytes. We investigated the effects of modifying various factors on the viability and development of oocytes after vitrification. These factors included: 1) exposure to the vitrification solution, 2) macromolecule addition (bovine serum albumin (BSA) or polyvinyl pyrrolidone (PVP)), 3) treatment with cytochalasin B, 4) equilibration temperature, and 5) vitrification method (microdrop or Cryotop). Oocytes were equilibrated and vitrified using medium containing ethylene glycol and propylene glycol. After warming, oocytes were subjected to in vitro maturation, stimulated parthenogenetically, and cultured in vitro. Survival rate, nuclear maturation, cleavage, development to the blastocyst stage and their quality were compared between the vitrified groups and the non-vitrified control group. It was found that 1) exposure to the vitrification solution for longer than 30 s was detrimental to embryo development; 2) replacement of BSA with PVP improved embryo development; 3) cytochalasin B treatment reduced the survival rates, but did not affect the blastocyst development rates, 4) equilibration at room temperature (25 °C) was the most beneficial, and 5) the microdrop method improved survival rates. With these adjustments, we were able to establish a simplified and defined cryopreservation system for porcine immature oocytes with improved efficacy.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Oócitos , Vitrificação , Animais , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Oócitos/efeitos dos fármacos , Suínos , Temperatura , Vitrificação/efeitos dos fármacos
9.
Reprod Fertil Dev ; 29(12): 2419-2429, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28502309

RESUMO

Although offspring have been produced from porcine oocytes vitrified at the germinal vesicle (GV) stage, the rate of embryo development remains low. In the present study, nuclear morphology and progression, cumulus expansion, transzonal projections (TZPs), ATP and glutathione (GSH) levels were compared between vitrified cumulus-oocyte complexes (COCs) and control COCs (no cryoprotectant treatment and no cooling), as well as a toxicity control (no cooling). Vitrification was performed with 17.5% (v/v) ethylene glycol and 17.5% (v/v) propylene glycol. Vitrification at the GV stage caused premature meiotic progression, reflected by earlier GV breakdown and untimely attainment of the MII stage. However, cytoplasmic maturation, investigated by measurement of ATP and GSH levels, as well as cumulus expansion, proceeded normally despite detectable damage to TZPs in vitrified COCs. Moreover, treatment with cryoprotectants caused fragmentation of nucleolus precursor bodies and morphological changes in F-actin from which oocytes were able to recover during subsequent IVM culture. Reduced developmental competence may be explained by premature nuclear maturation leading to oocyte aging, although other mechanisms, such as initiation of apoptosis and reduction of cytoplasmic mRNA, can also be considered. Further research will be required to clarify the presence and effects of these phenomena during the vitrification of immature COCs.


Assuntos
Células do Cúmulo/metabolismo , Oócitos/metabolismo , Vitrificação , Trifosfato de Adenosina/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Criopreservação , Crioprotetores/farmacologia , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Glutationa/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Suínos
10.
Anim Sci J ; 88(9): 1279-1290, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28124491

RESUMO

In vitro maturation (IVM) in serum causes hampered expansion of porcine cumulus-oocyte complexes (COCs) due to excessive alpha2 -macroglobulin (A2M). This study investigated two hypotheses that could explain the effect of A2M: (i) binding of epidermal growth factor (EGF) to A2M, followed by its decreased availability; and (ii) inhibition of zinc-dependent metalloproteases. Cumulus expansion was evaluated based on the diameter of the COCs, the proportion of COCs participating in a floating cloud and the proportion of COCs with loss of cumulus cells. The first hypothesis of decreased EGF availability was tested by increasing the EGF concentration (20 and 50 ng/mL vs. 10 ng/mL), but was not confirmed because cumulus expansion did not improve. To verify the second hypothesis of inhibited zinc-dependent metalloproteases, the effect of tissue inhibitor of metalloproteases-3 (TIMP-3) on cumulus expansion during IVM with and without A2M was investigated. To immuno-neutralize A2M, serum was pre-incubated with A2M antibodies. Impaired cumulus expansion because of TIMP-3 could only be observed during IVM in 10% of serum with A2M antibodies. No effect of TIMP-3 was observed in medium without A2M antibodies. These results indicate that A2M and TIMP-3 share a common target, a zinc-dependent metalloprotease. Future research is directed toward the identification of the protease involved.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Metaloproteases/antagonistas & inibidores , Oócitos/fisiologia , Zinco , alfa-Macroglobulinas/fisiologia , Animais , Feminino , Suínos , Inibidor Tecidual de Metaloproteinase-3/fisiologia
11.
J Reprod Dev ; 63(1): 59-65, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27795465

RESUMO

In the present study, we propose an alternative technique called cytoplast fusion to improve the maturation rate and developmental competence of growing oocytes collected from early antral follicles in pigs. We examined whether the fusion of a growing oocyte with the cytoplast from a fully-grown oocyte (CFR group) could better promote maturation and developmental competence of the growing oocyte compared to germinal vesicle (GV) transfer (GVTR group). After 44 h of in vitro maturation (IVM), most growing oocytes (GR group) were still arrested at the GV stage (64.0 ± 5.1%); this number was significantly higher (P < 0.01) than that of the other groups. No matured oocyte was observed in the GR group. The maturation rate of GVTR oocytes was significantly improved (18.8 ± 3.5%) compared with that of growing oocytes. The proportion of oocytes that reached the metaphase-II (M-II) stage in the CFR group (37.8 ± 2.0%) was significantly higher (P < 0.05) than that in the GVTR group, although still lower than that in the control group (75.2 ± 4.4%). No blastocyst was derived from growing oocytes. Among in vitro fertilized GVTR oocytes, 3.0 ± 1.9% developed into blastocysts; however, this percentage showed an insignificant increase compared with the GR group. On the other hand, the percentage of CFR embryos that developed into blastocysts (12.0 ± 4.3%) was significantly higher than that of GR embryos (0.0%), although still lower than that of control embryos (27.0 ± 5.5%). Total cell number in blastocysts in the GVTR group (23.3 ± 6.9) was significantly lower (P < 0.05) than that in the control group (50.4 ± 5.0). Meanwhile, the total cell number in blastocysts derived from CFR oocytes (36.3 ± 4.8) was comparable to that of the control group. In summary, cytoplast fusion significantly improves maturation rate and developmental competence of growing oocytes compared with GV transfer.


Assuntos
Citoplasma/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , Folículo Ovariano/citologia , Animais , Benzimidazóis/química , Blastocisto/citologia , Núcleo Celular , Feminino , Fertilização in vitro , Metáfase , Oogênese , Folículo Ovariano/metabolismo , Ovário/metabolismo , Suínos
12.
Anim Sci J ; 88(8): 1042-1048, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27882695

RESUMO

We evaluated the effects of polyethylene glycol (PEG) and Supercool X-1000 (SC) as supplements during the vitrification of immature cumulus-enclosed porcine oocytes in a solution based on 17.5% ethylene glycol + 17.5% propylene glycol. After warming, the oocytes were subjected to in vitro maturation, fertilization and embryo culture. In Experiment 1, equilibration and vitrification solutions were supplemented with or without 2% (w/v) PEG (PEG+ and PEG-, respectively). The survival rate, cleavage and blastocyst development were similar between PEG+ and PEG- groups; however, all values were lower than those in the non-vitrified control. In Experiment 2, vitrification solution was supplemented with or without 1% (v/v) SC (SC+ and SC-, respectively). The percentages of survival and blastocyst development were similar between SC+ and SC- groups but lower than those in the non-vitrified control. The percentage of cleavage in the SC- group was significantly lower than the control and the SC+ groups, which were in turn similar to one another. In both experiments, the cell numbers in blastocysts were not significantly different among the non-vitrified and vitrified groups. In conclusion, PEG did not improve oocyte survival and embryo development, whereas SC improved the ability of surviving oocytes to cleave but not to develop into blastocysts.


Assuntos
Criopreservação/métodos , Crioprotetores , Desenvolvimento Embrionário , Oócitos , Polietilenoglicóis , Vitrificação , Animais , Carbonato de Cálcio , Sobrevivência Celular , Citratos , Combinação de Medicamentos , Técnicas de Cultura Embrionária , Fertilização in vitro , Gelo , Técnicas de Maturação in Vitro de Oócitos , Óxido de Magnésio , Suínos
13.
J Reprod Dev ; 62(5): 439-449, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27349308

RESUMO

Polyspermy or the penetration of more than one sperm cell remains a problem during porcine in vitro fertilization (IVF). After in vitro culture of porcine zygotes, only a low percentage of blastocysts develop and their quality is inferior to that of in vivo derived blastocysts. It is unknown whether the cytoplasmic maturation of the oocyte is sufficiently sustained in current in vitro maturation (IVM) procedures. The complex interplay between oocyte and cumulus cells during IVM is a key factor in this process. By focusing on this bidirectional communication, it is possible to control the coordination of cumulus expansion, and nuclear and cytoplasmic maturation during IVM to some extent. Therefore, this review focuses on the regulatory mechanisms between oocytes and cumulus cells to further the development of new in vitro embryo production (IVP) procedures, resulting in less polyspermy and improved oocyte developmental potential. Specifically, we focused on the involvement of cAMP in maturation regulation and function of oocyte-secreted factors (OSFs) in the bidirectional regulatory loop between oocyte and cumulus cells. Our studies suggest that maintaining high cAMP levels in the oocyte during the first half of IVM sustained improved oocyte maturation, resulting in an enhanced response after IVF and cumulus matrix disassembly. Recent research indicated that the addition of OSFs during IVM enhanced the developmental competence of small follicle-derived oocytes, which was stimulated by epidermal growth factor (EGF) via developing EGF-receptor signaling.


Assuntos
Células do Cúmulo/citologia , AMP Cíclico/metabolismo , Oócitos/citologia , Animais , Adesão Celular , Técnicas de Cocultura , Células do Cúmulo/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Masculino , Oócitos/metabolismo , Transdução de Sinais , Espermatozoides/metabolismo , Suínos
14.
Anim Sci J ; 87(4): 503-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26249727

RESUMO

Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and ß-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system.


Assuntos
Técnicas de Cocultura/métodos , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/crescimento & desenvolvimento , Animais , Bucladesina/farmacologia , Bovinos , Células Cultivadas , Meios de Cultura/farmacologia , Feminino , Fertilização in vitro/efeitos dos fármacos , Gonadotropinas/farmacologia , Mercaptoetanol/farmacologia , Oócitos/fisiologia , Suínos
15.
Theriogenology ; 85(1): 27-38, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26506911

RESUMO

Different viruses have been detected in porcine semen. Some of them are on the list of the World Organization for Animal Health (OIE), and consequently, these pathogens are of socioeconomic and/or public health importance and are of major importance in the international trade of animals and animal products. Artificial insemination (AI) is one of the most commonly used assisted reproductive technologies in pig production worldwide. This extensive use has enabled pig producers to benefit from superior genetics at a lower cost compared to natural breeding. However, the broad distribution of processed semen doses for field AI has increased the risk of widespread transmission of swine viral pathogens. Contamination of semen can be due to infections of the boar or can occur during semen collection, processing, and storage. It can result in reduced semen quality, embryonic mortality, endometritis, and systemic infection and/or disease in the recipient female. The presence of viral pathogens in semen can be assessed by demonstration of viable virus, nucleic acid of virus, or indirectly by measuring serum antibodies in the boar. The best way to prevent disease transmission via the semen is to assure that the boars in AI centers are free from the disease, to enforce very strict biosecurity protocols, and to perform routine health monitoring of boars. Prevention of viral semen contamination should be the primary focus because it is easier to prevent contamination than to eliminate viruses once present in semen. Nevertheless, research and development of novel semen processing treatments such as single-layer centrifugation is ongoing and may allow in the future to decontaminate semen.


Assuntos
Inseminação Artificial/veterinária , Sêmen/virologia , Doenças dos Suínos/virologia , Viroses/veterinária , Animais , Feminino , Masculino , Suínos , Doenças dos Suínos/transmissão , Viroses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...