Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 130(3): 034309, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19173523

RESUMO

The pure rotational spectrum of HZnCN in its X (1)Sigma(+) electronic state has been recorded using pulsed Fourier transform microwave (FTMW) techniques in the frequency range 7-39 GHz-the first spectroscopic study of this species in the gas phase. The FTMW spectrum of ZnCN(X (2)Sigma(+)) has been measured as well. A new FTMW spectrometer with an angled beam and simplified electronics, based on a cryopump, was employed for these experiments. The molecules were created in a dc discharge from a gas mixture of Zn(CH(3))(2) and cyanogen (1% D(2) for the deuterated analogs), diluted with argon, that was expanded supersonically from a pulsed nozzle. Seven isotopologues of HZnCN arising from zinc, deuterium, and (13)C substitutions were studied; for every species, between three and five rotational transitions were recorded, each consisting of numerous hyperfine components arising from nitrogen, and in certain cases, deuterium, and 67-zinc nuclear spins. Four transitions of ZnCN were measured. From these data, rotational, nuclear spin-rotation, and quadrupole coupling constants have been determined for HZnCN, as well as rotational, and magnetic and quadrupole hyperfine parameters for the ZnCN radical. The bond lengths determined for HZnCN are r(H-Zn)=1.495 A, r(Zn-C)=1.897 A, and r(C-N)=1.146 A, while those for ZnCN are r(Zn-C)=1.950 A and r(C-N)=1.142 A. The zinc-carbon bond length thus shortens with the addition of the H atom. The nitrogen quadrupole coupling constant eqQ was found to be virtually identical in both cyanide species (-5.089 and -4.931 MHz), suggesting that the electric field gradient across the N nucleus is not influenced by the H atom. The quadrupole constant for the (67)Zn nucleus in H(67)ZnCN is unusually large relative to that in (67)ZnF (-104.578 versus -60 MHz), evidence that the bonding in the cyanide has more covalent character than in the fluoride. This study additionally suggests that hydrides of other metal cyanide species are likely candidates for high resolution spectroscopic investigations.

2.
Astrobiology ; 7(3): 433-42, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17630839

RESUMO

Prebiotic possibilities for the synthesis of interstellar ribose through a protic variant of the formose reaction under gas-phase conditions were studied in the absence of any known catalyst. The ion-molecule reaction products, diose and triose, were sought by mass spectrometry, and relevant masses were observed. Ab initio calculations were used to evaluate protic formose mechanism possibilities. A bilateral theoretical and experimental effort yielded a physical model for glycoaldehyde generation whereby a hydronium cation can mediate formaldehyde dimerization followed by covalent bond formation leading to diose and water. These results advance the possibility that ion-molecule reactions between formaldehyde (CH(2)O) and H(3)O(+) lead to formose reaction products and inform us about potential sugar formation processes in interstellar space.


Assuntos
Carboidratos/síntese química , Carboidratos/química , Difosfonatos , Exobiologia , Formaldeído/química , Gases , Modelos Químicos , Oniocompostos/química , Origem da Vida , Ribose/síntese química , Ribose/química , Termodinâmica
3.
Nature ; 447(7148): 1094-7, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17597755

RESUMO

The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.


Assuntos
Meio Ambiente Extraterreno/química , Oxigênio/análise , Vento , Arizona , Isomerismo
4.
Astrophys J ; 471(1): L61-4, 1996 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11541244

RESUMO

A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.


Assuntos
Astronomia , Poeira Cósmica/análise , Meio Ambiente Extraterreno , Formaldeído/química , Prótons , Fenômenos Astronômicos , Gases/análise , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA