Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Ter ; 174(Suppl 2(6)): 55-67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994749

RESUMO

Abstract: Colon cancer presents a complex pathophysiological landscape, which poses a significant challenge to the precise prediction of patient prognosis and treatment response. However, the emergence of omics sciences such as genomics, transcriptomics, proteomics, and metabolomics has provided powerful tools to identify molecular alterations and pathways involved in colon cancer development and progression. To address the lack of literature exploring the intersection of omics sciences, precision medicine, and colon cancer, we conducted a comprehensive search in ScienceDirect and PubMed databases. We included systematic reviews, reviews, case studies, clinical studies, and randomized controlled trials that were published between 2015-2023. To refine our search, we excluded abstracts and non-English studies. This review provides a comprehensive summary of the current understanding of the latest developments in precision medicine and omics sciences in the context of colon cancer. Studies have identified molecular subtypes of colon cancer based on genomic and transcrip-tomic profiles, which have implications for prognosis and treatment selection. Furthermore, precision medicine (which involves tailoring treatments, based on the unique molecular characteristics of each patient's tumor) has shown promise in improving outcomes for colon cancer patients. Omics sciences and precision medicine hold great promise for identifying new therapeutic targets and developing more effective treatments for colon cancer. Although not strictly designed as a systematic review, this review provides a readily accessible and up-to-date summary of the latest developments in the field, highlighting the challenges and opportunities for future research.


Assuntos
Neoplasias do Colo , Medicina de Precisão , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Genômica , Prognóstico , Proteômica
2.
Clin Ter ; 174(Suppl 2(6)): 85-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994752

RESUMO

Abstract: Pancreatic cancer is a leading cause of death worldwide, associated with poor prognosis outcomes and late treatment interventions. The pathological nature and extreme tissue heterogeneity of this disease has hampered all efforts to correctly diagnose and treat it. Omics sciences and precision medicine have revolutionized our understanding of pan-creatic cancer, providing a new hope for patients suffering from this devastating disease. By analyzing large-scale biological data sets and developing personalized treatment strategies, researchers and clinicians are working together to improve patient outcomes and ultimately find a cure for pancreatic cancer.


Assuntos
Genômica , Neoplasias Pancreáticas , Humanos , Medicina de Precisão , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas
3.
Clin Ter ; 174(Suppl 2(6)): 173-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994762

RESUMO

Abstract: Nutrients can influence the physiological processes in the body by interacting with molecular systems. Including nutrigenetics and nutrigenomics, nutritional genomics focuses on how bio-active food components interact with the genome. The purpose of this study is to clarify how nutrigenomics and vitamin dietary deficits relate to one another. Food tolerances among human sub-populations are known to vary due to genetic variation, which may also affect dietary needs. This raises the prospect of tailoring a person's nutritional intake for optimum health and illness prevention, based on their unique genome. To better understand the interplay between genes and nutrients and to plan tailored weight loss, nutrigenetic testing may soon become a key approach.


Assuntos
Nutrigenômica , Polimorfismo de Nucleotídeo Único , Humanos , Dieta , Vitaminas
4.
Clin Ter ; 174(Suppl 2(6)): 159-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994760

RESUMO

Background: Prickly pear (Opuntia) extracts have garnered con-siderable attention in recent years due to their promising medicinal and nutritional properties. This comprehensive review explores the multifaceted potential of prickly pear extracts in mitigating various chronic diseases, including cardiovascular diseases (CVDs), diabetes, obesity, cancer, neuronal diseases, and renal diseases. Methods: This review provides a comprehensive overview of the diverse therapeutic applications of Opuntia extracts in managing chronic diseases. The collective evidence underscores the potential of prickly pear as a valuable natural resource for addressing global health challenges. Further research and clinical investigations are warranted to unlock the full potential of Opuntia in the prevention and treatment of chronic diseases. Results: Studies have suggested that the bioactive compounds within prickly pear may influence glucose metabolism by improving insulin sensitivity, reducing insulin resistance, and modulating gut microbiota composition. These pathways exhibit potential in the reduction of hyperglycemia, which is a fundamental aspect of metabolic syndromes. Opuntia extracts demonstrate also antioxidant, anti-inflammatory capabilities that can contribute to improving health in various conditions. Conclusion: Further research and clinical investigations are warranted to unlock the full potential of Opuntia in the prevention and treatment of chronic diseases.


Assuntos
Síndrome Metabólica , Opuntia , Humanos , Síndrome Metabólica/tratamento farmacológico , Opuntia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Suplementos Nutricionais , Doença Crônica , Frutas
5.
Clin Ter ; 174(Suppl 2(6)): 154-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994759

RESUMO

Abstract: Whole grains play a crucial role in the human diet. Despite being cultivated in distinct regions, they are shipped everywhere, therefore making biosafety and security essential throughout the grain industry, from harvest to distribution. Phytopathogens, which have an impact on crop yield, induce grain spoiling and reduce grain quality in a number of ways, providing a constant danger to crop storage and distribution. Chemical control approaches, such as the use of pesticides and fungicides, are detrimental to the environment and hazardous to human health. The development of alternative, environmentally friendly, and generally acceptable solutions to ensure increased grain yield, biosafety, and quality during storage is crucial in order to guarantee sufficient food and feed supplies. As a means of self-defense against microbial infection and spoilage, plant matrices feature antimicrobial natural chemicals, which have led to their widespread usage as food preservatives in recent decades. Olive tree extracts, known for their high polyphenol content, have been widely used in the food preservation industry with great success, and are highly welcomed by people all over the world. In addition to their well-known health advantages, polyphenols are a valuable plant secondary metabolite because of their great antibacterial capabilities as natural preservatives. This article discusses the promising usage of polyphenols from olive trees as a natural alternative preservative, while also highlighting the future of olive eaves in the food industry.


Assuntos
Olea , Humanos , Olea/química , Polifenóis/farmacologia , Polifenóis/análise , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/análise
6.
Clin Ter ; 174(Suppl 2(6)): 169-172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994761

RESUMO

Abstract: The legume tree known as carob (Ceratonia siliqua L.) is indigenous to the Mediterranean area and over the centuries its pods had been traditionally used mostly as animal feed. However, it has gained great attention in human nutrition due to the molecular compounds it contains, which could offer many potential health benefits: for example, carob is renowned for its high content of fiber, vitamins, and minerals. Moreover, in traditional medicine it is credited with the ability to control glucose metabolism and gut microbiome. Modern science has also extensively acknowledged the numerous health advantages deriving from its consumption, including its anti-diabetic, anti-inflammatory, and antioxidant properties. Due to its abundant contents of pectin, gums, and polyphenols (such as pinitol), carob has garnered significant attention as a well-researched plant with remarkable therapeutic properties. Notably, carob is extensively used in the production of semi-finished pastry products, particularly in ice cream and other creams (especially as a substitute for cocoa/chocolate): these applications indeed facilitate the exploration of its positive effects on glucose metabolism. Our study aimed at examining the effects of carob extract on intestinal microbiota and glucose metabolism. In this review, we conducted a thorough examination, comprising in vitro, in vivo, and clinical trials to appraise the consequences on human health of polyphenols and pectin from different carob species, including recently discovered ones with high polyphenol contents. Our goal was to learn more about the mechanisms through which carob extract can support a balanced gut flora and improve one's glucose metabolism. These results could influence the creation of novel functional foods and dietary supplements, to help with the management and prevention of chronic illnesses like diabetes and obesity.


Assuntos
Fabaceae , Microbioma Gastrointestinal , Animais , Humanos , Polifenóis/farmacologia , Glucose , Pectinas
7.
Clin Ter ; 174(Suppl 2(6)): 193-199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994764

RESUMO

Abstract: Nutrigenetics and nutrigenomics are two interrelated fields that explore the influence of genetic diversity on nutrient responses and function. While nutrigenetics investigates the effects of hereditary ge-netic variations on micronutrient metabolism, nutrigenomics examines the intricate relationship between diet and the genome, studying how genetic variants impact nutrient intake and gene expression. These disciplines offer valuable insights into predicting and managing chronic diseases through personalized nutritional approaches. Nutrigenomics employs cutting-edge genomics technologies to study nutrient-genome interactions. Key principles involve genetic variability among ethnic groups, affecting nutrient bioavailability and metabolism, and the influence of dietary choices based on cultural, geographic, and socioeconomic factors. Polymorphisms, particularly single-nucleotide polymorphisms (SNPs), significantly influence gene activity and are associated with specific phenotypes that are related to micronutrient deficiencies. Minerals are inorganic elements, vital for various physiological functions. Understanding the SNPs associated with mineral deficien-cies is crucial for assessing disease risk and developing personalized treatment plans. This knowledge can inform public health interventions, targeted screening programs, educational campaigns, and fortified food products to address deficiencies effectively. Nutrigenomics research has the potential to revolutionize clinical and nutritional practices, providing personalized recommendations, enhancing illness risk assessment, and advancing public health initiatives. Despite the need for further research, harnessing nutrigenomics' potential can lead to more focused and efficient methods for preventing and treating mineral deficiencies.


Assuntos
Nutrigenômica , Polimorfismo de Nucleotídeo Único , Humanos , Nutrigenômica/métodos , Dieta , Micronutrientes , Minerais
8.
Clin Ter ; 174(Suppl 2(6)): 200-208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994765

RESUMO

Background: Nutrigenomics - the study of the interactions between genetics and nutrition - has emerged as a pivotal field in personalized nutrition. Among various genetic variations, single-nucleotide polymorphisms (SNPs) have been extensively studied for their probable relationship with metabolic traits. Methods: Throughout this review, we have employed a targeted research approach, carefully handpicking the most representative and relevant articles on the subject. Our methodology involved a systematic review of the scientific literature to ensure a comprehensive and accurate overview of the available sources. Results: SNPs have demonstrated a significant influence on lipid metabolism, by impacting genes that encode for enzymes involved in lipid synthesis, transport, and storage. Furthermore, they have the ability to affect enzymes in glycolysis and insulin signaling pathways: in a way, they can influence the risk of type 2 diabetes. Thanks to recent advances in genotyping technologies, we now know numerous SNPs linked to lipid and carbohydrate metabolism. The large-scale studies on this topic have unveiled the potential of personalized dietary recommendations based on an individual's genetic makeup. Personalized nutritional interventions hold promise to mitigate the risk of various chronic diseases; however, translating these scientific insights into actionable dietary guidelines is still challenging. Conclusions: As the field of nutrigenomics continues to evolve, collaborations between geneticists, nutritionists, and healthcare providers are essential to harness the power of genetic information for improving metabolic health. By unraveling the genetic basis of metabolic responses to diet, this field holds the potential to revolutionize how we approach dietary recommendations and preventive healthcare practices.


Assuntos
Diabetes Mellitus Tipo 2 , Nutrigenômica , Humanos , Polimorfismo de Nucleotídeo Único , Dieta , Lipídeos , Metabolismo dos Carboidratos
9.
Clin Ter ; 174(Suppl 2(6)): 183-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994763

RESUMO

Abstract: Nutrigenomics, a rapidly evolving field that bridges genetics and nutrition, explores the intricate interactions between an individual's genetic makeup and how they respond to nutrients. At its core, this discipline focuses on investigating Single Nucleotide Polymorphisms (SNPs), the most common genetic variations, which significantly influence a person's physiological status, mood regulation, and sleep patterns, thus playing a pivotal role in a wide range of health out-comes. Through decoding their functional implications, researchers are able to uncover genetic factors that impact physical fitness, pain perception, and susceptibility to mood disorders and sleep disruptions. The integration of nutrigenomics into healthcare holds the promise of transformative interventions that cater to individual well-being. Notable studies shed light on the connection between SNPs and personalized responses to exercise, as well as vulnerability to mood disorders and sleep disturbances. Understanding the intricate interplay between genetics and nutrition informs targeted dietary approaches, molding individual health trajectories. As research advances, the convergence of genetics and nourishment is on the brink of reshaping healthcare, ushering in an era of personalized health management that enhances overall life quality. Nutrigenomics charts a path toward tailored nutritional strategies, fundamentally reshaping our approach to health preservation and preventive measures.


Assuntos
Quiroprática , Nutrigenômica , Humanos , Polimorfismo de Nucleotídeo Único , Dieta , Exercício Físico
10.
Clin Ter ; 174(Suppl 2(6)): 209-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994766

RESUMO

Abstract: Nutritional genomics, also known as nutrigenomics, is the study of how a person's diet and genes interact with each other. The field of nutrigenomics aims to explain how common nutrients, food additives and preservatives can change the body's genetic balance towards either health or sickness. This study reviews the effects of SNPs on detoxification, antioxidant capacity, and longevity. SNPs are mutations that only change one nucleotide at a specific site in the DNA. Specific SNPs have been associated to a variety of biological processes, including detoxification, antioxidant capacity, and longevity. This article mainly focuses on the following genes: SOD2, AS3MT, CYP1A2, and ADO-RA2A (detoxification); LEPR, TCF7L2, KCNJ11, AMY1, and UCP3 (antioxidant capacity); FOXO3 and BPIFB4 (longevity). This review underlines that many genes-among which FOXO3, TCF7L2, LEPR, CYP1A2, ADORA2A, and SOD2-have a unique effect on a person's health, susceptibility to disease, and general well-being. Due to their important roles in numerous biological processes and their implications for health, these genes have undergone intensive research. Examining the SNPs in these genes can provide insight into how genetic variants affect individuals' responses to their environment, their likelihood of developing certain diseases, and their general state of health.


Assuntos
Longevidade , Nutrigenômica , Humanos , Longevidade/genética , Antioxidantes , Citocromo P-450 CYP1A2/genética , Polimorfismo de Nucleotídeo Único , Dieta , Metiltransferases/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética
11.
Clin Ter ; 174(Suppl 2(6)): 214-226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994767

RESUMO

Background: Nutrigenomics explores the intricate interplay between single nucleotide polymorphisms (SNPs), food preferences, and susceptibilities. Methods: This study delves into the influence of SNPs on food sensitivities, allergies, tyramine intolerance, and taste preferences. Genetic factors intricately shape physiological reactions to dietary elements, with polymorphisms contributing to diverse sensitivities and immune responses. Results: Tyramine intolerance, arising from metabolic inefficiencies, unveils genetic markers exerting influence on enzyme function. SNPs transcend genetic diversity by exerting substantial impact on food sensitivities/allergies, with specific variants correlating to heightened susceptibilities. Genes accountable for digesting food components play pivotal roles. Given the rising prevalence of food sensitivities/allergies, understanding genetic foundations becomes paramount. In the realm of taste and food preferences, SNPs sculpt perception and choice, yielding variances in taste perception and preferences for sweetness, bitterness, and umami. This genetic medley extends its reach to encompass wider health implications. Conclusions: In this review article, we have focused on how polymorphisms wield significant sway over physiological responses, sensitivities, and dietary inclinations. Unraveling these intricate relationships illuminates the path to personalized nutrition, potentially revolutionizing tailored recommendations and interventions.


Assuntos
Preferências Alimentares , Hipersensibilidade , Humanos , Preferências Alimentares/fisiologia , Polimorfismo de Nucleotídeo Único , Nutrigenômica , Tiramina
12.
Lymphology ; 53(3): 141-151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33350288

RESUMO

PECAM1 is a member of the immunoglobulin superfamily and is expressed in monocytes, neutrophils, macrophages and other types of immune cells as well as in endothelial cells. PECAM1 function is crucial for the development and maturation of B lymphocytes. The aim of this study was to link rare PECAM1 variants found in lymphedema patients with the development of lymphatic system malformations. Using NGS, we previously tested 246 Italian lymphedema patients for variants in 29 lymphedema-associated genes and obtained 235 negative results. We then tested these patients for variants in the PECAM1 gene. We found three probands with rare variants in PECAM1. All variants were heterozygous missense variants. In Family 1, the unaffected mother and brother of the proband were found to carry the same variant as the proband. Lymphoscintigraphy was performed to determine possible lymphatic malformations and showed that in both cases a bilateral slight reduction in the speed and lymphatic clearance of the lower limbs. PECAM1 function is important for lymphatic vasculature formation. We found variants in PECAM1 that may be associated with susceptibility to lymphedema.


Assuntos
Variação Genética , Linfedema/diagnóstico , Linfedema/etiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Família , Testes Genéticos , Heterozigoto , Humanos , Anormalidades Linfáticas/diagnóstico , Anormalidades Linfáticas/genética , Linfocintigrafia , Mutação de Sentido Incorreto
13.
Lymphology ; 53(1): 20-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32521127

RESUMO

CYP26B1 is a member of the cytochrome P450 family and is responsible for the break-down of retinoic acid for which appropriate levels are important for normal development of the cardiovascular and lymphatic systems. In a cohort of 235 patients with lymphatic malformations, we performed genetic testing for the CYP26B1 gene. These probands had previously tested negative for known lymphedema genes. We identified two heterozygous missense CY-P26B1 variants in two patients. Our bioinformatic study suggested that alterations caused by these variants have no major effect on the overall stability of CYP26B1 protein structure. Balanced levels of retinoic acid maintained by CYP26B1 are crucial for the lymphatic system. We identified that CYP26B1 could be involved in predisposition for lymphedema. We propose that CYP26B1 be further explored as a new candidate gene for genetic testing of lymphedema patients.


Assuntos
Linfangiogênese , Linfedema/patologia , Mutação de Sentido Incorreto , Ácido Retinoico 4 Hidroxilase/genética , Feminino , Humanos , Linfedema/genética , Linfedema/metabolismo , Pessoa de Meia-Idade , Prognóstico , Conformação Proteica , Ácido Retinoico 4 Hidroxilase/química , Ácido Retinoico 4 Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...