Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 2): 116817, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541416

RESUMO

Natural and anthropogenic environmental impacts can introduce contaminants into sensitive habitats, threatening ecosystems and human health. Consistent monitoring of coastal areas provides critical environmental assessment data. Sediments and Eastern Oyster (Crassostrea virginica) tissues were collected at fourteen South Carolina (SC) and four North Carolina (NC) sites as part of the National Oceanic and Atmospheric Administration's Mussel Watch environmental monitoring program. Cellular and molecular techniques were employed to measure C. virginica stress response, specifically, Lipid Peroxidation (LPx), Glutathione (GSH), and qPCR techniques. Gene specific primers targeted for detecting oxidative stress and cellular death were developed in C. virginica to gauge response to current environmental conditions using gill and hepatopancreas (HP) tissue. In order to validate gene specific markers as additional assessment tools, a 96 h zinc (Zn) laboratory exposure was performed. Cellular biomarker data revealed tissue specific responses. Hepatopancreas data showed C. virginica exhibited stress through the lipid peroxidation assay amongst sampling sites, however, response was managed through glutathione detoxification. Gill tissue data had significantly lower levels of cellular biomarker response compared to hepatopancreas. Molecular biomarkers targeting these cellular stress pathways through qPCR analysis show upregulation of Metallothionein in hepatopancreas and gill tissue with a concurrent > 2-fold upregulation in the detoxification marker Superoxide Dismutase (SOD) at three NC sites. SC sites displayed higher stress levels through LPx assays and down-regulation in GPx gene activity. Laboratory zinc exposure revealed no significance in cellular biomarker results, however, molecular data showed gills responding to zinc treatment through upregulation of Metallothionein, SOD and Cathepsin L, indicating an acute response in gills. Collectively, chemical, cellular and molecular methods clarify sentinel stress response of biological impacts and aid in evaluating environmental health in coastal ecosystems. This combined methodological approach provides a detailed analysis of environmental conditions and improves land-use management decisions.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Humanos , South Carolina , Ecossistema , Crassostrea/genética , Crassostrea/metabolismo , North Carolina , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Zinco/análise , Metalotioneína , Poluentes Químicos da Água/análise , Brânquias/metabolismo
2.
Arch Environ Contam Toxicol ; 79(3): 333-342, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33057757

RESUMO

Perfluorooctane sulfonate (PFOS) is a legacy contaminant that has been detected globally within the environment and throughout numerous species, including humans. Despite an international ban on its use, this unique contaminant continues to persist in organisms and their surroundings due to PFOS's inability to breakdown into nontoxic forms resulting in bioaccumulation. In this study, we analyzed the effects of a technical mixture of PFOS (linear and branched isomers) in the adult Eastern oyster, Crassostrea virginica, at 2 days and 7 days exposure. Biomarker analysis (lysosomal destabilization, lipid peroxidation, and glutathione assays) in oyster tissue along with chemical analysis (liquid chromatography tandem mass spectrometry) of PFOS in oyster tissue and water samples revealed the oysters' ability to overcome exposures without significant damage to lipid membranes or the glutathione phase II enzyme system; however, significant cellular lysosomal damage was observed. The oysters were able to eliminate up to 96% of PFOS at 0.3 mg/L and 3 mg/L exposures when allowed to depurate for 2 days in clean seawater. Chemical analysis showed the linear isomer to be the prevailing fraction of the residual PFOS contained in oyster tissue. Results provide insight into possible detrimental cellular effects of PFOS exposure in addition to offering insight into contaminant persistence in oyster tissue.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Crassostrea/efeitos dos fármacos , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/toxicidade , Adulto , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/metabolismo , Animais , Biomarcadores/metabolismo , Crassostrea/metabolismo , Fluorocarbonos/análise , Fluorocarbonos/metabolismo , Humanos , Isomerismo , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Teóricos , Alimentos Marinhos/análise , Água do Mar/química , South Carolina , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
3.
PLoS One ; 12(12): e0189162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216270

RESUMO

Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa), a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.


Assuntos
Mutação da Fase de Leitura , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais
4.
Aquat Toxicol ; 142-143: 303-16, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24080042

RESUMO

The 2010 Deepwater Horizon disaster in the Gulf of Mexico was the largest oil spill in United States history. Crude oils are highly toxic to developing fish embryos, and many pelagic fish species were spawning in the northern Gulf in the months before containment of the damaged Mississippi Canyon 252 (MC252) wellhead (April-July). The largest prior U.S. spill was the 1989 grounding of the Exxon Valdez that released 11 million gallons of Alaska North Slope crude oil (ANSCO) into Prince William Sound. Numerous studies in the aftermath of the Exxon Valdez spill defined a conventional crude oil injury phenotype in fish early life stages, mediated primarily by toxicity to the developing heart. To determine whether this type of injury extends to fishes exposed to crude oil from the Deepwater Horizon - MC252 incident, we used zebrafish to compare the embryotoxicity of ANSCO alongside unweathered and weathered MC252 oil. We also developed a standardized protocol for generating dispersed oil water-accommodated fractions containing microdroplets of crude oil in the size range of those detected in subsurface plumes in the Gulf. We show here that MC252 oil and ANSCO cause similar cardiotoxicity and photo-induced toxicity in zebrafish embryos. Morphological defects and patterns of cytochrome P450 induction were largely indistinguishable and generally correlated with polycyclic aromatic compound (PAC) composition of each oil type. Analyses of embryos exposed during different developmental windows provided additional insight into mechanisms of crude oil cardiotoxicity. These findings indicate that the impacts of MC252 crude oil on fish embryos and larvae are consistent with the canonical ANSCO cardiac injury phenotype. For those marine fish species that spawned in the northern Gulf of Mexico during and after the Deepwater Horizon incident, the established literature can therefore inform the assessment of natural resource injury in the form of potential year-class losses.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Nadadeiras de Animais/efeitos dos fármacos , Nadadeiras de Animais/efeitos da radiação , Animais , Dermatite Fototóxica , Embrião não Mamífero/efeitos da radiação , Coração/efeitos dos fármacos , Poluição por Petróleo , Luz Solar , Estados Unidos
5.
Endocrinology ; 153(7): 3345-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22569788

RESUMO

This paper reports the identification, expression, binding kinetics, and functional studies of two novel type III lamprey GnRH receptors (lGnRH-R-2 and lGnRH-R-3) in the sea lamprey, a basal vertebrate. These novel GnRH receptors share the structural features and amino acid motifs common to other known gnathostome GnRH receptors. The ligand specificity and activation of intracellular signaling studies showed ligands lGnRH-II and -III induced an inositol phosphate (IP) response at lGnRH-R-2 and lGnRH-R-3, whereas the ligand lGnRH-I did not stimulate an IP response. lGnRH-II was a more potent activator of lGnRH-R-3 than lGnRH-III. Stimulation of lGnRH-R-2 and lGnRH-R-3 testing all three lGnRH ligands did not elicit a cAMP response. lGnRH-R-2 has a higher binding affinity in response to lGnRH-III than lGnRH-II, whereas lGnRH-R-3 has a higher binding affinity in response to lGnRH-II than IGnRH-III. lGnRH-R-2 precursor transcript was detected in a wide variety of tissues including the pituitary whereas lGnRH-R-3 precursor transcript was not as widely expressed and primarily expressed in the brain and eye of male and female lampreys. From our phylogenetic analysis, we propose that lGnRH-R-1 evolved from a common ancestor of all vertebrate GnRH receptors and lGnRH-R-2 and lGnRH-R-3 likely occurred due to a gene duplication within the lamprey lineage. In summary, we propose from our findings of receptor subtypes in the sea lamprey that the evolutionary recruitment of specific pituitary GnRH receptor subtypes for particular physiological functions seen in later evolved vertebrates was an ancestral character that first arose in a basal vertebrate.


Assuntos
Receptores LHRH/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células COS , Clonagem Molecular , Olho/metabolismo , Feminino , Lampreias , Ligantes , Masculino , Dados de Sequência Molecular , Peptídeos/química , Filogenia , Hipófise/metabolismo , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transfecção , Vertebrados
6.
Gen Comp Endocrinol ; 170(2): 276-82, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709062

RESUMO

Sea lampreys are anadromous and semelparous, i.e., they spawn only once in their lifetime, after which they die. Sexual maturation is thus a synchronized process coordinated with the life stages of the lamprey. Recently, a novel gonadotropin-releasing hormone, lamprey GnRH-II (lGnRH-II), was identified in lampreys and suggested to have a hypothalamic role in reproduction (Kavanaugh et al., 2008). To further understand the role of lGnRH-II, changes in ovarian morphology, brain gonadotropin-releasing hormone (lGnRH-I, -II, and -III), and plasma estradiol were examined during the final two months of the reproductive season of adult male and female sea lamprey. The results showed significant correlations between water temperature, fluctuation of brain GnRHs, plasma estradiol and reproductive stages during this time. In males, lGnRH-I concentration increased early in the season, peaked, then declined with a subsequent increase with the final maturational stages. In comparison, lGnRH-II and -III concentrations were also elevated early in the season in males, dropped and then peaked in mid-season with a subsequent decline of lGnRH-II or increase of lGnRH-III at spermiation. In females, lGnRH-III concentration peaked in mid-season with a drop at ovulation while lGnRH-I remained unchanged during the season. In contrast, lGnRH-II concentrations in females were elevated at the beginning of the season and then dropped and remained low during the rest of the season. In summary, these data provide evidence that there are seasonal and differential changes of the three GnRHs during this final reproductive period suggesting specific roles for each of the GnRHs in male and female reproduction.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Petromyzon/fisiologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Reprodução , Estações do Ano , Animais , Cromatografia Líquida de Alta Pressão , Estradiol/sangue , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Ovário/anatomia & histologia , Petromyzon/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Maturidade Sexual , Temperatura
7.
BMC Dev Biol ; 7: 126, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17996054

RESUMO

BACKGROUND: Nodals are secreted signaling proteins with many roles in vertebrate development. Here, we identify a new role for Nodal signaling in regulating closure of the rostral neural tube of zebrafish. RESULTS: We find that the neural tube in the presumptive forebrain fails to close in zebrafish Nodal signaling mutants. For instance, the cells that will give rise to the pineal organ fail to move from the lateral edges of the neural plate to the midline of the diencephalon. The open neural tube in Nodal signaling mutants may be due in part to reduced function of N-cadherin, a cell adhesion molecule expressed in the neural tube and required for neural tube closure. N-cadherin expression and localization to the membrane are reduced in fish that lack Nodal signaling. Further, N-cadherin mutants and morphants have a pineal phenotype similar to that of mutants with deficiencies in the Nodal pathway. Overexpression of an activated form of the TGFbeta Type I receptor Taram-A (Taram-A*) cell autonomously rescues mesendoderm formation in fish with a severe decrease in Nodal signaling. We find that overexpression of Taram-A* also corrects their open neural tube defect. This suggests that, as in mammals, the mesoderm and endoderm have an important role in regulating closure of the anterior neural tube of zebrafish. CONCLUSION: This work helps establish a role for Nodal signals in neurulation, and suggests that defects in Nodal signaling could underlie human neural tube defects such as exencephaly, a fatal condition characterized by an open neural tube in the anterior brain.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Caderinas/genética , Embrião não Mamífero/embriologia , Imuno-Histoquímica , Hibridização In Situ , Mutação , Proteína Nodal , Distribuição Tecidual , Peixe-Zebra/embriologia
8.
J Clin Invest ; 117(10): 3075-86, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17823661

RESUMO

In humans, loss-of-function mutations in the gene encoding Wnt1 inducible signaling pathway protein 3 (WISP3) cause the autosomal-recessive skeletal disorder progressive pseudorheumatoid dysplasia (PPD). However, in mice there is no apparent phenotype caused by Wisp3 deficiency or overexpression. Consequently, the in vivo activities of Wisp3 have remained elusive. We cloned the zebrafish ortholog of Wisp3 and investigated its biologic activity in vivo using gain-of-function and loss-of-function approaches. Overexpression of zebrafish Wisp3 protein inhibited bone morphogenetic protein (BMP) and Wnt signaling in developing zebrafish. Conditioned medium-containing zebrafish and human Wisp3 also inhibited BMP and Wnt signaling in mammalian cells by binding to BMP ligand and to the Wnt coreceptors low-density lipoprotein receptor-related protein 6 (LRP6) and Frizzled, respectively. Wisp3 proteins containing disease-causing amino acid substitutions found in patients with PPD had reduced activity in these assays. Morpholino-mediated inhibition of zebrafish Wisp3 protein expression in developing zebrafish affected pharyngeal cartilage size and shape. These data provide a biologic assay for Wisp3, reveal a role for Wisp3 during zebrafish cartilage development, and suggest that dysregulation of BMP and/or Wnt signaling contributes to cartilage failure in humans with PPD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Osteocondrodisplasias/genética , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Bioensaio , Proteínas de Sinalização Intercelular CCN , Clonagem Molecular , Progressão da Doença , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Dados de Sequência Molecular , Mutação , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...