Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403228

RESUMO

The RF-amide peptides comprise a family of neuropeptides that includes the kisspeptin (Kp), the natural ligand of kisspeptin receptor (Kiss1r), and the RFamide-related peptide 3 (RFRP-3) that binds preferentially to the neuropeptide FF receptor 1 (Npffr1). Kp stimulates prolactin (PRL) secretion through the inhibition of tuberoinfundibular dopaminergic (TIDA) neurons. Because Kp also has affinity to Npffr1, we investigated the role of Npffr1 in the control of PRL secretion by Kp and RFRP-3. Intracerebroventricular (ICV) injection of Kp increased PRL and LH secretion in ovariectomized, estradiol-treated rats. The unselective Npffr1 antagonist RF9 prevented these responses, whereas the selective antagonist GJ14 altered PRL but not LH levels. The ICV injection of RFRP-3 in ovariectomized, estradiol-treated rats increased PRL secretion, which was associated with a rise in the dopaminergic activity in the median eminence, but had no effect on LH levels. The RFRP-3-induced increase in PRL secretion was prevented by GJ14. Moreover, the estradiol-induced PRL surge in female rats was blunted by GJ14, along with an amplification of the LH surge. Nevertheless, whole-cell patch clamp recordings showed no effect of RFRP-3 on the electrical activity of TIDA neurons in dopamine transporter-Cre recombinase transgenic female mice. We provide evidence that RFRP-3 binds to Npffr1 to stimulate PRL release, which plays a role in the estradiol-induced PRL surge. This effect of RFRP-3 is apparently not mediated by a reduction in the inhibitory tone of TIDA neurons but possibly involves the activation of a hypothalamic PRL-releasing factor.


Assuntos
Neuropeptídeos , Prolactina , Camundongos , Ratos , Feminino , Animais , Humanos , Prolactina/farmacologia , Prolactina/metabolismo , Kisspeptinas , Estradiol/farmacologia , Ovariectomia
2.
J Neuroendocrinol ; 34(10): e13188, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306200

RESUMO

Postmenopausal hot flushes are caused by lack of estradiol (E2) but their neuroendocrine basis is still poorly understood. Here, we investigated the interrelationship between norepinephrine and hypothalamic neurons, with emphasis on kisspeptin neurons in the arcuate nucleus (ARC), as a regulatory pathway in the vasomotor effects of E2. Ovariectomized (OVX) rats displayed increased tail skin temperature (TST), and this increase was prevented in OVX rats treated with E2 (OVX + E2). Expression of Fos in the hypothalamus and the number of ARC kisspeptin neurons coexpressing Fos were increased in OVX rats. Likewise, brainstem norepinephrine neurons of OVX rats displayed higher Fos immunoreactivity associated with the increase in TST. In the ARC, the density of dopamine-ß-hydroxylase (DBH)-immunoreactive (ir) fibers was not altered by E2 but, importantly, DBH-ir terminals were found in close apposition to kisspeptin cells, revealing norepinephrine inputs to ARC kisspeptin neurons. Intracerebroventricular injection of the α2-adrenergic agonist clonidine (CLO) was used to reduce central norepinephrine release, confirmed by the decreased 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratio in the preoptic area and ARC. Accordingly, CLO treatment in OVX rats reduced ARC Kiss1 mRNA levels and TST to the values of OVX + E2 rats. Conversely, CLO stimulated Kiss1 expression in the anteroventral periventricular nucleus (AVPV) and increased luteinizing hormone secretion. These findings provide evidence that augmented heat dissipation in OVX rats involves the increase in central norepinephrine that modulates hypothalamic areas related to thermoregulation, including ARC kisspeptin neurons. This neuronal network is suppressed by E2 and its imbalance may be implicated in the vasomotor symptoms of postmenopausal hot flushes.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Ratos , Feminino , Animais , Humanos , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Norepinefrina/farmacologia , Temperatura Alta , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Estradiol , Regulação da Temperatura Corporal , Ovariectomia
3.
Endocrinology ; 163(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35789268

RESUMO

Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.


Assuntos
Estradiol , Kisspeptinas , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Receptores de Estrogênio/metabolismo
4.
Am J Physiol Cell Physiol ; 322(4): C794-C801, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264016

RESUMO

It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KDHOM) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KDHOM mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KDHOM mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KDHOM mice. Establishing a causal relationship between acetylcholine and NE, VAChT KDHOM mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.


Assuntos
Colinérgicos , Norepinefrina , Adrenérgicos , Animais , Camundongos , Miócitos Cardíacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
5.
J Neuroendocrinol ; 32(11): e12880, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32627906

RESUMO

Dopamine from tuberoinfundibular dopaminergic (TIDA) neurones tonically inhibits prolactin (PRL) secretion. Lactational hyperprolactinaemia is associated with a reduced activity of TIDA neurones. However, it remains controversial whether the suckling-induced PRL surge is driven by an additional decrease in dopamine release or by stimulation from a PRL-releasing factor. In the present study, we further investigated the role of dopamine in the PRL response to suckling. Non-lactating (N-Lac), lactating 4 hour apart from pups (Lac), Lac with pups return and suckling (Lac+S), and post-lactating (P-Lac) rats were evaluated. PRL levels were elevated in Lac rats and increased linearly within 30 minutes of suckling in Lac+S rats. During the rise in PRL levels, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME) and neurointermediate lobe of the pituitary did not differ between Lac+S and Lac rats. However, dopamine and DOPAC were equally decreased in Lac and Lac+S compared to N-Lac and P-Lac rats. Suckling, in turn, reduced phosphorylation of tyrosine hydroxylase in the ME of Lac+S. Domperidone and bromocriptine were used to block and activate pituitary dopamine D2 receptors, respectively. Domperidone increased PRL secretion in both N-Lac and Lac rats, and suckling elicited a robust surge of PRL over the high basal levels in domperidone-treated Lac+S rats. Conversely, bromocriptine blocked the PRL response to suckling. The findings obtained in the present study provide evidence that dopamine synthesis and release are tonically reduced during lactation, whereas dopamine is still functional with respect to inhibiting PRL secretion. However, there appears to be no further reduction in dopamine release associated with the suckling-induced rise in PRL. Instead, the lower dopaminergic tone during lactation appears to be required to sensitise the pituitary to a suckling-induced PRL-releasing factor.


Assuntos
Animais Lactentes/fisiologia , Dopamina/fisiologia , Hipotálamo/fisiologia , Lactação/fisiologia , Prolactina/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Bromocriptina/farmacologia , Domperidona/farmacologia , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Hipotálamo/efeitos dos fármacos , Eminência Mediana/efeitos dos fármacos , Eminência Mediana/metabolismo , Adeno-Hipófise Parte Intermédia/efeitos dos fármacos , Adeno-Hipófise Parte Intermédia/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Transl Psychiatry ; 10(1): 33, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32066672

RESUMO

Although loneliness is a human experience, it can be estimated in laboratory animals deprived from physical contact with conspecifics. Rodents under social isolation (SI) tend to develop emotional distress and cognitive impairment. However, it is still to be determined whether those conditions present a common neural mechanism. Here, we conducted a series of behavioral, morphological, and neurochemical analyses in adult mice that underwent to 1 week of SI. We observed that SI mice display a depressive-like state that can be prevented by enriched environment, and the antidepressants fluoxetine (FLX) and desipramine (DES). Interestingly, chronic administration of FLX, but not DES, was able to counteract the deleterious effect of SI on social memory. We also analyzed cell proliferation, neurogenesis, and astrogenesis after the treatment with antidepressants. Our results showed that the olfactory bulb (OB) was the neurogenic niche with the highest increase in neurogenesis after the treatment with FLX. Considering that after FLX treatment social memory was rescued and depressive-like behavior decreased, we propose neurogenesis in the OB as a possible mechanism to unify the FLX ability to counteract the deleterious effect of SI.


Assuntos
Fluoxetina , Bulbo Olfatório , Animais , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Memória , Camundongos , Neurogênese
7.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32052048

RESUMO

Hyperprolactinemia causes infertility by suppressing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion. Because effects of prolactin (PRL) on the hypothalamus usually require estradiol (E2), we investigated the role of E2 in PRL-induced suppression of LH pulses. Ovariectomized (OVX) rats treated with oil or E2 (OVX + E2) received a subcutaneous injection of ovine PRL (oPRL) 30 minutes before serial measurement of LH in the tail blood by enzyme-linked immunosorbent assay. E2 reduced pulsatile LH secretion. oPRL at 1.5 mg/kg further reduced LH pulse frequency in OVX + E2 but had no effect in OVX rats. The higher dose of 6-mg/kg oPRL decreased LH pulse frequency in both OVX and OVX + E2 rats, whereas pulse amplitude and mean LH levels were lowered only in OVX + E2 rats. Kisspeptin immunoreactivity and Kiss1 messenger ribonucleic acid (mRNA) levels were decreased in the arcuate nucleus (ARC) of OVX + E2 rats. oPRL decreased both kisspeptin peptide and gene expression in the ARC of OVX rats but did not alter the already low levels in OVX + E2 rats. In the anteroventral periventricular nucleus, oPRL did not change kisspeptin immunoreactivity and, paradoxically, increased Kiss1 mRNA only in OVX + E2 rats. Moreover, oPRL effectively reduced Gnrh expression regardless of E2 treatment. In this study we used tail-tip blood sampling to determine the acute effect of PRL on LH pulsatility in female rats. Our findings characterize the role of E2 in the PRL modulation of hypothalamic components of the gonadal axis and LH release, demonstrating that E2 potentiates but is not essential for the suppression of pulsatile LH secretion caused by hyperprolactinemia.


Assuntos
Estradiol/farmacologia , Hipotálamo/efeitos dos fármacos , Hormônio Luteinizante/sangue , Prolactina/farmacologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratos
8.
Endocrinology ; 160(3): 522-533, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668693

RESUMO

Kisspeptin has been shown to stimulate prolactin secretion. We investigated whether kisspeptin acts through the Kiss1 receptor (Kiss1r) to regulate dopamine and prolactin. Initially, we evaluated prolactin response in a Kiss1r-deficient mouse line, in which Kiss1r had been knocked into GnRH neurons (Kiss1r-/-R). Intracerebroventricular kisspeptin-10 (Kp-10) increased prolactin release in wild-type but not in Kiss1r-/-R female mice. In ovariectomized, estradiol-treated rats, the Kiss1r antagonist kisspeptin-234 abolished the Kp-10-induced increase in prolactin release but failed to prevent the concomitant reduction in the activity of tuberoinfundibular dopaminergic (TIDA) neurons, as determined by the 3,4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence. Using whole-cell patch clamp recordings in juvenile male rats, we found no direct effect of Kp-10 on the electrical activity of TIDA neurons. In addition, dual-label in situ hybridization in the hypothalamus of female rats showed that Kiss1r is expressed in the periventricular nucleus of the hypothalamus (Pe) and arcuate nucleus of the hypothalamus (ARC) but not in tyrosine hydroxylase (Th)-expressing neurons. Kisspeptin also has affinity for the neuropeptide FF receptor 1 (Npffr1), which was expressed in the majority of Pe dopaminergic neurons but only in a low proportion of TIDA neurons in the ARC. Our findings demonstrate that Kiss1r is necessary to the effect of kisspeptin on prolactin secretion, although TIDA neurons lack Kiss1r and are electrically unresponsive to kisspeptin. Thus, kisspeptin is likely to stimulate prolactin secretion via Kiss1r in nondopaminergic neurons, whereas the colocalization of Npffr1 and Th suggests that Pe dopaminergic neurons may play a role in the kisspeptin-induced inhibition of dopamine release.


Assuntos
Dopamina/metabolismo , Kisspeptinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Prolactina/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animais , Neurônios Dopaminérgicos/fisiologia , Feminino , Masculino , Camundongos Knockout , Ratos Wistar , Receptores de Neuropeptídeos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
J Appl Physiol (1985) ; 126(2): 393-402, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927731

RESUMO

The present study investigated whether intrinsic exercise capacity affects the changes in thermoregulation, metabolism and central dopamine (DA) induced by treadmill running. Male Wistar rats were subjected to three incremental exercises and ranked as low-performance (LP), standard-performance (SP), and high-performance (HP) rats. In the first experiment, abdominal (TABD) and tail (TTAIL) temperatures were registered in these rats during submaximal exercise (SE) at 60% of maximal speed. Immediately after SE, rats were decapitated and concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in the preoptic area (POA). In the second experiment, oxygen consumption was measured and mechanical efficiency (ME) was calculated in these rats during an incremental exercise. HP rats ran for longer periods and were fatigued with higher TABD values, with no difference in TTAIL. Nevertheless, thermoregulatory efficiency was higher in HP rats, compared with other groups. DA and DOPAC concentrations in the POA were increased by SE, with higher levels in HP compared with LP and SP rats. V̇o2 also differed between groups, with HP rats displaying a lower consumption throughout the incremental exercise but a higher V̇o2 at fatigue. ME, in turn, was consistently higher in HP than in LP and SP rats. Thus, our results show that HP rats have greater TABD values at fatigue, which seem to be related to a higher dopaminergic activity in the POA. Moreover, HP rats exhibited a greater thermoregulatory efficiency during exercise, which can be attributed to a lower V̇o2, but not to changes in tail heat loss mechanisms. NEW & NOTEWORTHY Our findings reveal that rats with higher intrinsic exercise capacities have greater thermoregulatory efficiencies and increased dopaminergic activity in the preoptic area, a key brain area in thermoregulatory control, while exercising. Moreover, higher intrinsic exercise capacities are associated with decreased oxygen consumption for a given exercise intensity, which indicates greater mechanical efficiencies. Collectively, these findings help to advance our knowledge of why some rats of a given strain can exercise for longer periods than others.


Assuntos
Regulação da Temperatura Corporal , Dopamina/metabolismo , Tolerância ao Exercício , Contração Muscular , Músculo Esquelético/fisiologia , Área Pré-Óptica/metabolismo , Corrida , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Masculino , Consumo de Oxigênio , Ratos Wistar , Fatores de Tempo
10.
Endocrinology ; 158(6): 1812-1826, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28387824

RESUMO

Kisspeptin (Kp) regulates prolactin (PRL) in an estradiol-dependent manner. We investigated the interaction between ovarian steroid receptors and Kp in the control of PRL secretion. Intracerebroventricular injections of Kp-10 or Kp-234 were performed in ovariectomized (OVX) rats under different hormonal treatments. Kp-10 increased PRL release and decreased 3,4-dihydroxyphenylacetic acid levels in the median eminence (ME) of OVX rats treated with estradiol (OVX+E), which was prevented by tamoxifen. Whereas these effects of Kp-10 were absent in OVX rats, they were replicated in OVX rats treated with selective agonist of estrogen receptor (ER)α, propylpyrazole triol, but not of ERß, diarylpropionitrile. Furthermore, the Kp-10-induced increase in PRL was two times higher in OVX+E rats also treated with progesterone (OVX+EP), which was associated with a reduced expression of both tyrosine hydroxylase (TH) and Ser40-phosphorylated TH in the ME. Kp-10 also reduced dopamine levels in the ME of OVX+EP rats, an effect blocked by the progesterone receptor (PR) antagonist RU486. We also determined the effect of Kp antagonism with Kp-234 on the estradiol-induced surges of PRL and luteinizing hormone (LH), using tail-tip blood sampling combined with ultrasensitive enzyme-linked immunosorbent assay. Kp-234 impaired the early phase of the PRL surge and prevented the LH surge in OVX+E rats. Thus, we provide evidence that Kp stimulation of PRL release requires ERα and is potentiated by progesterone via PR activation. Moreover, alongside its essential role in the LH surge, Kp seems to play a role in the peak phase of the estradiol-induced PRL surge.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/fisiologia , Kisspeptinas/farmacologia , Prolactina/metabolismo , Receptores de Progesterona/fisiologia , Animais , Feminino , Ovariectomia , Ratos , Ratos Wistar
11.
Endocrinology ; 155(3): 1010-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24456164

RESUMO

Prolactin (PRL) is known to suppress LH secretion. Kisspeptin neurons regulate LH secretion and express PRL receptors. We investigated whether PRL acts on kisspeptin neurons to suppress LH secretion in lactating (Lac) and virgin rats. Lac rats displayed high PRL secretion and reduced plasma LH and kisspeptin immunoreactivity in the arcuate nucleus (ARC). Bromocriptine-induced PRL blockade significantly increased ARC kisspeptin and plasma LH levels in Lac rats but did not restore them to the levels of non-Lac rats. Bromocriptine effects were prevented by the coadministration of ovine PRL (oPRL). Virgin ovariectomized (OVX) rats treated with either systemic or intracerebroventricular oPRL displayed reduction of kisspeptin expression in the ARC and plasma LH levels, and these effects were comparable with those of estradiol treatment in OVX rats. Conversely, estradiol-treated OVX rats displayed increased kisspeptin immunoreactivity in the anteroventral periventricular nucleus, whereas oPRL had no effect in this brain area. The expression of phosphorylated signal transducer and activator of transcription 5 was used to determine whether kisspeptin neurons in the ARC were responsive to PRL. Accordingly, intracerebroventricular oPRL induced expression of phosphorylated signal transducer and activator of transcription 5 in the great majority of ARC kisspeptin neurons in virgin and Lac rats. We provide here evidence that PRL acts on ARC neurons to inhibit kisspeptin expression in female rats. During lactation, PRL contributes to the inhibition of ARC kisspeptin. In OVX rats, high PRL levels suppress kisspeptin expression and reduce LH release. These findings suggest a pathway through which hyperprolactinemia may inhibit LH secretion and thereby cause infertility.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Prolactina/metabolismo , Animais , Bromocriptina/química , Estradiol/metabolismo , Feminino , Hiperprolactinemia/metabolismo , Imuno-Histoquímica , Fosforilação , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Fator de Transcrição STAT5/metabolismo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...