Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 115: e190501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33174908

RESUMO

BACKGROUND: Non-human primates contribute to the spread of the yellow fever virus (YFV) and the establishment of transmission cycles in endemic areas. OBJECTIVE: To describe the severe histopathological aspects of YFV infection, 10 squirrel monkeys were infected with YFV and blood, brain, liver, kidney, spleen, heart, lung, lymph node and stomach were collected at 1-7, 10, 20 and 30 days post-infection (dpi). METHODS: Histopathological analysis and detection of the genome and viral antigens and neutralising antibodies were performed by RT-PCR, immunohistochemistry and neutralisation test, respectively. FINDINGS: Only one animal died from the experimental infection. The genome and viral antigens were detected in all investigated organs (1-30 dpi) and the neutralising antibodies from seven to 30 dpi. The brain contained perivascular haemorrhage (6 dpi); in the liver, midzonal haemorrhage and lytic necrosis (6 dpi) were observed. The kidney had bleeding in the Bowman's capsule and tubular necrosis (6 dpi). Pyknotic lymphocytes were observed in the spleen (1-20 dpi), the lung had haemorrhage (2-6 dpi), in the endocardium it contained nuclear pyknosis and necrosis (2-3 dpi) and the stomach contained blood in the lumen (6 dpi). MAIN FINDINGS: Squirrel monkeys reliably reproduced the responses observed in human cases of yellow fever and, therefore, constitute an excellent experimental model for studies on the pathophysiology of the disease.


Assuntos
Saimiri/virologia , Febre Amarela/diagnóstico , Vírus da Febre Amarela/isolamento & purificação , Animais , Modelos Animais de Doenças
2.
Mem. Inst. Oswaldo Cruz ; 115: e190501, 2020. graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135279

RESUMO

BACKGROUND Non-human primates contribute to the spread of the yellow fever virus (YFV) and the establishment of transmission cycles in endemic areas. OBJECTIVE To describe the severe histopathological aspects of YFV infection, 10 squirrel monkeys were infected with YFV and blood, brain, liver, kidney, spleen, heart, lung, lymph node and stomach were collected at 1-7, 10, 20 and 30 days post-infection (dpi). METHODS Histopathological analysis and detection of the genome and viral antigens and neutralising antibodies were performed by RT-PCR, immunohistochemistry and neutralisation test, respectively. FINDINGS Only one animal died from the experimental infection. The genome and viral antigens were detected in all investigated organs (1-30 dpi) and the neutralising antibodies from seven to 30 dpi. The brain contained perivascular haemorrhage (6 dpi); in the liver, midzonal haemorrhage and lytic necrosis (6 dpi) were observed. The kidney had bleeding in the Bowman's capsule and tubular necrosis (6 dpi). Pyknotic lymphocytes were observed in the spleen (1-20 dpi), the lung had haemorrhage (2-6 dpi), in the endocardium it contained nuclear pyknosis and necrosis (2-3 dpi) and the stomach contained blood in the lumen (6 dpi). MAIN FINDINGS Squirrel monkeys reliably reproduced the responses observed in human cases of yellow fever and, therefore, constitute an excellent experimental model for studies on the pathophysiology of the disease.


Assuntos
Animais , Saimiri/virologia , Febre Amarela/diagnóstico , Vírus da Febre Amarela/isolamento & purificação , Modelos Animais de Doenças
3.
Toxicol In Vitro ; 56: 150-155, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30654088

RESUMO

Ototoxicity is a collateral effect of prolonged treatment with chloroquine which is a widely utilized as an anti-lupus and anti-malarial drug. Glial cells of inner ear are responsible for maintenance of neuronal cells homeostasis in auditory system. In the current study we have evaluated chloroquine-induced toxicity and protective effect of ascorbic acid treatment on Schwann glial cell cultures of inner ear. Glial cells were cultured from organ of Corti of mice cochlear structure. Purity of Schwann glial cell was confirmed by S100 protein staining. Cell viability was evaluated in control and cultures treated with different concentrations of chloroquine. Glutamate uptake and ROS production were measured by HPLC and DCFH-DA probe fluorescence, respectively. Results have shown that chloroquine treatment evoked concentration and time -dependent toxicity (LC50 = 70 µM) as well as significant decrease on glutamate uptake and high production of ROS in glial cell cultures. Co-treatment with ascorbic acid has prevented both chloroquine-induced ROS production and chloroquine toxicity on glial cell cultures. This pre-clinical study is the first one to demonstrate chloroquine-induced ROS production by glial cells of inner ear as well as the protective effect exerted by ascorbic acid on these cells.


Assuntos
Antimaláricos/toxicidade , Antirreumáticos/toxicidade , Ácido Ascórbico/farmacologia , Cloroquina/toxicidade , Neuroglia/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Orelha Interna/citologia , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos BALB C , Neuroglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...