Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceutics ; 15(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37242652

RESUMO

Agathisflavone, purified from Cenostigma pyramidale (Tul.) has been shown to be neuroprotective in in vitro models of glutamate-induced excitotoxicity and inflammatory damage. However, the potential role of microglial regulation by agathisflavone in these neuroprotective effects is unclear. Here we investigated the effects of agathisflavone in microglia submitted to inflammatory stimulus in view of elucidating mechanisms of neuroprotection. Microglia isolated from cortices of newborn Wistar rats were exposed to Escherichia coli lipopolysaccharide (LPS, 1 µg/mL) and treated or not with agathisflavone (1 µM). Neuronal PC12 cells were exposed to a conditioned medium from microglia (MCM) treated or not with agathisflavone. We observed that LPS induced microglia to assume an activated inflammatory state (increased CD68, more rounded/amoeboid phenotype). However, most microglia exposed to LPS and agathisflavone, presented an anti-inflammatory profile (increased CD206 and branched-phenotype), associated with the reduction in NO, GSH mRNA for NRLP3 inflammasome, IL1-ß, IL-6, IL-18, TNF, CCL5, and CCL2. Molecular docking also showed that agathisflavone bound at the NLRP3 NACTH inhibitory domain. Moreover, in PC12 cell cultures exposed to the MCM previously treated with the flavonoid most cells preserved neurites and increased expression of ß-tubulin III. Thus, these data reinforce the anti-inflammatory activity and the neuroprotective effect of agathisflavone, effects associated with the control of NLRP3 inflammasome, standing out it as a promising molecule for the treatment or prevention of neurodegenerative diseases.

2.
Neurotoxicology ; 94: 59-70, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336098

RESUMO

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1ß and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.


Assuntos
Gliose , Monocrotalina , Humanos , Ratos , Animais , Monocrotalina/toxicidade , Monocrotalina/metabolismo , Gliose/induzido quimicamente , Ratos Wistar , Astrócitos/metabolismo , RNA Mensageiro/metabolismo
3.
Cell Mol Neurobiol ; 42(5): 1283-1300, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33387119

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.


Assuntos
Inflamassomos , Doença de Parkinson , Humanos , Inflamação/patologia , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson/patologia
4.
Mol Biol Rep ; 48(2): 1475-1483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492574

RESUMO

Rutin is an important flavonoid consumed in the daily diet. It is also known as vitamin P and has been extensively investigated due to its pharmacological properties. On the other hand, neuronal death induced by glutamate excitotoxicity is present in several diseases including neurodegenerative diseases. The neuroprotective properties of rutin have been under investigation, although its mechanism of action is still poorly understood. We hypothesized that the mechanisms of neuroprotection of rutin are associated with the increase in glutamate metabolism in astrocytes. This study aimed to evaluate the protective effects of rutin with a focus on the modulation of glutamate detoxification. We used brain organotypic cultures from post-natal Wistar rats (P7-P9) treated with rutin to evaluate neural cell protection and levels of proteins involved in the glutamate metabolism. Moreover, we used cerebral cortex slices from adult Wistar rats to evaluate glutamate uptake. We showed that rutin inhibited the cell death and loss of glutamine synthetase (GS) induced by glutamate that was associated with an increase in glutamate-aspartate transporter (GLAST) in brain organotypic cultures from post-natal Wistar rats. Additionally, it was observed that rutin increased the glutamate uptake in cerebral cortex slices from adult Wistar rats. We conclude that rutin is a neuroprotective agent that prevents glutamate excitotoxicity and thereof suggest that this effect involves the regulation of astrocytic metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Rutina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Transportador 1 de Aminoácido Excitatório , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/toxicidade , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Ratos , Ratos Wistar
5.
Neurotoxicology ; 66: 98-106, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29588162

RESUMO

Recent evidence shows that aminochrome induces glial activation related to neuroinflammation. This dopamine derived molecule induces formation and stabilization of alpha-synuclein oligomers, mitochondria dysfunction, oxidative stress, dysfunction of proteasomal and lysosomal systems, endoplasmic reticulum stress and disruption of the microtubule network, but until now there has been no evidence of effects on production of cytokines and neurotrophic factors, that are mechanisms involved in neuronal loss in Parkinson's disease (PD). This study examines the potential role of aminochrome on the regulation of NGF, GDNF, TNF-α and IL-1ß production and microglial activation in organotypic midbrain slice cultures from P8 - P9 Wistar rats. We demonstrated aminochrome (25 µM, for 24 h) induced reduction of GFAP expression, reduction of NGF and GDNF mRNA levels, morphological changes in Iba1+ cells, and increase of both TNF-α, IL-1ß mRNA and protein levels. Moreover, aminochrome (25 µM, for 48 h) induced morphological changes in the edge of slices and reduction of TH expression. These results demonstrate neuroinflammation, as well as negative regulation of neurotrophic factors (GDNF and NGF), may be involved in aminochrome-induced neurodegeneration, and they contribute to a better understanding of PD pathogenesis.


Assuntos
Encefalite/induzido quimicamente , Indolquinonas/toxicidade , Mesencéfalo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Animais , Encefalite/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Interleucina-1beta/metabolismo , Mesencéfalo/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Wistar , Técnicas de Cultura de Tecidos , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Toxicol In Vitro ; 42: 54-60, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28392416

RESUMO

Aminochrome has been suggested as a more physiological preclinical model capable of inducing five of the six mechanisms of Parkinson's Disease (PD). Until now, there is no evidence that aminochrome induces glial activation related to neuroinflammation, an important mechanism involved in the loss of dopaminergic neurons. In this study, the potential role of aminochrome on glial activation was studied in primary mesencephalic neuron-glia cultures and microglial primary culture from Wistar rats. We demonstrated that aminochrome induced a reduction in the number of viable cells on cultures exposed to concentration between 10 and 100µM. Moreover, aminochrome induces neuronal death determined by Fluoro-jade B. Furthermore, we demonstrated that aminochrome induced reduction in the number of TH-immunoreactive neurons and reactive gliosis, featured by morphological changes in GFAP+ and Iba1+ cells, increase in the number of OX-42+ cells and increase in the number of NF-κB p50 immunoreactive cells. These results demonstrate aminochrome neuroinflammatory ability and support the hypothesis that it may be a better PD preclinical model to find new pharmacological treatment that stop the development of this disease.


Assuntos
Astrócitos/efeitos dos fármacos , Indolquinonas/toxicidade , Microglia/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Antígeno CD11b/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microglia/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Ratos Wistar
7.
An Acad Bras Cienc ; 89(1): 247-261, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423083

RESUMO

Prosopis juliflora is a shrub that has been used to feed animals and humans. However, a synergistic action of piperidine alkaloids has been suggested to be responsible for neurotoxic damage observed in animals. We investigated the involvement of programmed cell death (PCD) and autophagy on the mechanism of cell death induced by a total extract (TAE) of alkaloids and fraction (F32) from P. juliflora leaves composed majoritary of juliprosopine in a model of neuron/glial cell co-culture. We saw that TAE (30 µg/mL) and F32 (7.5 µg/mL) induced reduction in ATP levels and changes in mitochondrial membrane potential at 12 h exposure. Moreover, TAE and F32 induced caspase-9 activation, nuclear condensation and neuronal death at 16 h exposure. After 4 h, they induced autophagy characterized by decreases of P62 protein level, increase of LC3II expression and increase in number of GFP-LC3 cells. Interestingly, we demonstrated that inhibition of autophagy by bafilomycin and vinblastine increased the cell death induced by TAE and autophagy induced by serum deprivation and rapamycin reduced cell death induced by F32 at 24 h. These results indicate that the mechanism neural cell death induced by these alkaloids involves PCD via caspase-9 activation and autophagy, which seems to be an important protective mechanism.


Assuntos
Alcaloides/toxicidade , Autofagia/fisiologia , Neuroglia/efeitos dos fármacos , Piperidinas/toxicidade , Prosopis/química , Trifosfato de Adenosina/análise , Alcaloides/isolamento & purificação , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Neuroglia/fisiologia , Piperidinas/isolamento & purificação , Extratos Vegetais/toxicidade , Ratos , Ratos Wistar , Fatores de Tempo
8.
An. acad. bras. ciênc ; 89(1): 247-261, Jan,-Mar. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886640

RESUMO

ABSTRACT Prosopis juliflora is a shrub that has been used to feed animals and humans. However, a synergistic action of piperidine alkaloids has been suggested to be responsible for neurotoxic damage observed in animals. We investigated the involvement of programmed cell death (PCD) and autophagy on the mechanism of cell death induced by a total extract (TAE) of alkaloids and fraction (F32) from P. juliflora leaves composed majoritary of juliprosopine in a model of neuron/glial cell co-culture. We saw that TAE (30 µg/mL) and F32 (7.5 µg/mL) induced reduction in ATP levels and changes in mitochondrial membrane potential at 12 h exposure. Moreover, TAE and F32 induced caspase-9 activation, nuclear condensation and neuronal death at 16 h exposure. After 4 h, they induced autophagy characterized by decreases of P62 protein level, increase of LC3II expression and increase in number of GFP-LC3 cells. Interestingly, we demonstrated that inhibition of autophagy by bafilomycin and vinblastine increased the cell death induced by TAE and autophagy induced by serum deprivation and rapamycin reduced cell death induced by F32 at 24 h. These results indicate that the mechanism neural cell death induced by these alkaloids involves PCD via caspase-9 activation and autophagy, which seems to be an important protective mechanism.


Assuntos
Animais , Ratos , Piperidinas/toxicidade , Autofagia/fisiologia , Neuroglia/efeitos dos fármacos , Prosopis/química , Alcaloides/toxicidade , Piperidinas/isolamento & purificação , Autofagia/efeitos dos fármacos , Fatores de Tempo , Extratos Vegetais/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Trifosfato de Adenosina/análise , Neuroglia/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Ratos Wistar , Alcaloides/isolamento & purificação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...