Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 106(1-2): 33-48, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33594577

RESUMO

KEY MESSAGE: H2O2 priming reprograms essential proteins' expression to help plants survive, promoting responsive and unresponsive proteins adjustment to salt stress. ABSTACRT: Priming is a powerful strategy to enhance abiotic stress tolerance in plants. Despite this, there is scarce information about the mechanisms induced by H2O2 priming for salt stress tolerance, particularly on proteome modulation. Improving maize cultivation in areas subjected to salinity is imperative for the local economy and food security. Thereby, this study aimed to investigate physiological changes linked with post-translational protein events induced by foliar H2O2 priming of Zea mays plants under salt stress. As expected, salt treatment promoted a considerable accumulation of Na+ ions, a 12-fold increase. It drastically affected growth parameters and relative water content, as well as promoted adverse alteration in the proteome profile, when compared to the absence of salt conditions. Conversely, H2O2 priming was beneficial via specific proteome reprogramming, which promoted better response to salinity by 16% reduction in Na+ content and shoots growth improvement, increasing 61% in dry mass. The identified proteins were associated with photosynthesis and redox homeostasis, critical metabolic pathways for helping plants survive in saline stress by the protection of chloroplasts organization and carbon fixation, as well as state redox. This research provides new proteomic data to improve understanding and forward identifying biotechnological strategies to promote salt stress tolerance.


Assuntos
Peróxido de Hidrogênio/toxicidade , Proteômica , Estresse Salino/efeitos dos fármacos , Zea mays/fisiologia , Malondialdeído/metabolismo , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Proteoma/metabolismo , Sódio/metabolismo , Água , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
2.
Plant Physiol Biochem ; 154: 723-734, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32763797

RESUMO

This study investigated the proteome modulation and physiological responses of Sorghum bicolor plants grown in nutrient solutions containing nitrate (NO3-) or ammonium (NH4+) at 5.0 mM, and subjected to salinity with 75 mM NaCl for ten days. Salinity promoted significant reductions in leaf area, root and shoot dry mass of sorghum plants, regardless of nitrogen source; however, higher growth was observed in ammonium-grown plants. The better performance of ammonium-fed stressed plants was associated with low hydrogen peroxide accumulation, and improved CO2 assimilation and K+/Na+ homeostasis under salinity. Proteomic study revealed a nitrogen source-induced differential modulation in proteins related to photosynthesis/carbon metabolism, energy metabolism, response to stress and other cellular processes. Nitrate-fed plants induced thylakoidal electron transport chain proteins and structural and carbon assimilation enzymes, but these mechanisms seemed to be insufficient to mitigate salt damage in photosynthetic performance. In contrast, the greater tolerance to salinity of ammonium-grown plants may have arisen from: i.) de novo synthesis or upregulation of enzymes from photosynthetic/carbon metabolism, which resulted in better CO2 assimilation rates under NaCl-stress; ii.) activation of proteins involved in energy metabolism which made available energy for salt responses, most likely by proton pumps and Na+/H+ antiporters; and iii.) reprogramming of proteins involved in response to stress and other metabolic processes, constituting intricate pathways of salt responses. Overall, our findings not only provide new insights of molecular basis of salt tolerance in sorghum plants induced by ammonium nutrition, but also give new perspectives to develop biotechnological strategies to generate more salt-tolerant crops.


Assuntos
Compostos de Amônio , Tolerância ao Sal , Sorghum/fisiologia , Folhas de Planta , Proteômica , Salinidade
3.
Plant Cell Rep ; 33(8): 1289-306, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24770441

RESUMO

KEY MESSAGE: Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC-ESI-MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.


Assuntos
Fabaceae/fisiologia , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Estresse Fisiológico , Regulação para Baixo , Eletroforese em Gel Bidimensional , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Tolerância ao Sal , Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...