Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 172: 106820, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346573

RESUMO

BACKGROUND: Prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are eicosanoids involved in modulation of the antiviral immune response. Recent studies have identified increased levels of several eicosanoids in the plasma and bronchoalveolar lavage of patients with coronavirus disease (COVID-19). This study investigated correlations between plasma levels of PGE2 and LTB4 and clinical severity of COVID-19. METHODS: This cross-sectional study involved non-infected (n = 10) individuals and COVID-19 patients classified as cured (n = 13), oligosymptomatic (n = 29), severe (n = 15) or deceased (n = 11). Levels of D-dimer a, known COVID-19 severity marker, PGE2 and LTB4 were measured by ELISAs and data were analysed with respect to viral load. RESULTS: PGE2 plasma levels were decreased in COVID-19 patients compared to the non-infected group. Changes in PGE2 and LTB4 levels did not correlate with any particular clinical presentations of COVID-19. However, LTB4 was related to decreased SARS-CoV-2 burden in patients, suggesting that only LTB4 is associated with control of viral load. CONCLUSIONS: Our data indicate that PGE2/LTB4 plasma levels are not associated with COVID-19 clinical severity. Hospitalized patients with COVID-19 are treated with corticosteroids, which may influence the observed eicosanoid imbalance. Additional analyses are required to fully understand the participation of PGE2 receptors in the pathophysiology of COVID-19.


Assuntos
COVID-19 , Dinoprostona , Leucotrieno B4 , SARS-CoV-2 , Carga Viral , Humanos , COVID-19/sangue , COVID-19/virologia , COVID-19/imunologia , Leucotrieno B4/sangue , Estudos Transversais , Dinoprostona/sangue , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Idoso , Adulto , Índice de Gravidade de Doença , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/análise
2.
Mem Inst Oswaldo Cruz ; 118: e220160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888851

RESUMO

BACKGROUND: The knowledge about eicosanoid metabolism and lipid droplet (LD) formation in the Leishmania is very limited and new approaches are needed to identify which bioactive molecules are produced of them. OBJECTIVES: Herein, we compared LDs and eicosanoids biogenesis in distinct Leishmania species which are etiologic agents of different clinical forms of leishmaniasis. METHODS: For this, promastigotes of Leishmania amazonensis, L. braziliensis and L. infantum were stimulated with polyunsaturated fatty acids (PUFA) and LD and eicosanoid production was evaluated. We also compared mutations in structural models of human-like cyclooxygenase-2 (GP63) and prostaglandin F synthase (PGFS) proteins, as well as the levels of these enzymes in parasite cell extracts. FINDINGS: PUFAs modulate the LD formation in L. braziliensis and L. infantum. Leishmania spp with equivalent tissue tropism had same protein mutations in GP63 and PGFS. No differences in GP63 production were observed among Leishmania spp, however PGFS production increased during the parasite differentiation. Stimulation with arachidonic acid resulted in elevated production of hydroxyeicosatetraenoic acids compared to prostaglandins. MAIN CONCLUSIONS: Our data suggest LD formation and eicosanoid production are distinctly modulated by PUFAS dependent of Leishmania species. In addition, eicosanoid-enzyme mutations are more similar between Leishmania species with same host tropism.


Assuntos
Leishmania braziliensis , Leishmania infantum , Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Gotículas Lipídicas , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Leishmania braziliensis/genética , Leishmania infantum/genética
3.
Mem Inst Oswaldo Cruz ; 117: e220072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36700578

RESUMO

BACKGROUND: Patients with severe coronavirus disease 2019 (COVID-19) often present with coagulopathies and have high titres of circulating antibodies against viral proteins. OBJECTIVES: Herein, we evaluated the association between D-dimer and circulating immunoglobulin levels against viral proteins in patients at different clinical stages of COVID-19. METHODS: For this, we performed a cross-sectional study involving patients of the first wave of COVID-19 clinically classified as oligosymptomatic (n = 22), severe (n = 30), cured (n = 27) and non-infected (n = 9). Next, we measured in the plasma samples the total and fraction of immunoglobulins against the nucleoprotein (NP) and the receptor-binding domain (RBD) of the spike proteins by enzyme-linked immunosorbent assay (ELISA) assays. FINDINGS: Patients with severe disease had a coagulation disorder with high levels of D-dimer as well as circulating IgG against the NP but not the RBD compared to other groups of patients. In addition, high levels of D-dimer and IgG against the NP and RBD were associated with disease severity among the patients in this study. MAIN CONCLUSIONS: Our data suggest that IgG against NP and RBD participates in the worsening of COVID-19. Although the humoral response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is partially understood, and more efforts are needed to clarify gaps in the knowledge of this process.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Imunidade Humoral , Humanos , Anticorpos Antivirais/sangue , COVID-19/imunologia , Estudos Transversais , Imunoglobulina G/sangue , SARS-CoV-2 , Proteínas Virais
4.
Mem. Inst. Oswaldo Cruz ; 118: e220160, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422149

RESUMO

BACKGROUND The knowledge about eicosanoid metabolism and lipid droplet (LD) formation in the Leishmania is very limited and new approaches are needed to identify which bioactive molecules are produced of them. OBJECTIVES Herein, we compared LDs and eicosanoids biogenesis in distinct Leishmania species which are etiologic agents of different clinical forms of leishmaniasis. METHODS For this, promastigotes of Leishmania amazonensis, L. braziliensis and L. infantum were stimulated with polyunsaturated fatty acids (PUFA) and LD and eicosanoid production was evaluated. We also compared mutations in structural models of human-like cyclooxygenase-2 (GP63) and prostaglandin F synthase (PGFS) proteins, as well as the levels of these enzymes in parasite cell extracts. FINDINGS PUFAs modulate the LD formation in L. braziliensis and L. infantum. Leishmania spp with equivalent tissue tropism had same protein mutations in GP63 and PGFS. No differences in GP63 production were observed among Leishmania spp, however PGFS production increased during the parasite differentiation. Stimulation with arachidonic acid resulted in elevated production of hydroxyeicosatetraenoic acids compared to prostaglandins. MAIN CONCLUSIONS Our data suggest LD formation and eicosanoid production are distinctly modulated by PUFAS dependent of Leishmania species. In addition, eicosanoid-enzyme mutations are more similar between Leishmania species with same host tropism.

5.
Mem Inst Oswaldo Cruz ; 116: e210270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35195194

RESUMO

Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.


Assuntos
Gotículas Lipídicas , Parasitos , Animais , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Virulência
6.
Arch Pathol Lab Med ; 146(3): 272-277, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797908

RESUMO

CONTEXT.­: The gold standard test to identify the presence of SARS-CoV-2 in COVID-19 patients is the real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), but inconclusive data and false-positive diagnosis remain the major problem of this approach. OBJECTIVE.­: To compare the fitness of 2 primer sets to the SARS-CoV-2 nucleocapsid phosphoprotein gene (NP) in the molecular diagnosis of COVID-19, we verified the inconclusive data and confidence of high cycle threshold (Ct) values in SARS-CoV-2 detection. DESIGN.­: The 970 patient samples were tested by using United States Centers for Disease Control and Prevention protocol. We compared the fitness of 2 primer sets to 2 different regions of the NP gene. In addition, we checked the consistency of positive samples with high Ct values by retesting extracted SARS-CoV-2 RNA or by second testing of patients. RESULTS.­: N1 and N2 displayed similar fitness during testing, with no differences between Ct values. Then, we verified security range Ct values related to positive diagnostics, with Ct values above 34 failing in 21 of 32 cases (65.6%) after retesting of samples. The patient samples with Ct values above 34.89 that were doubly positive revealed a low sensitivity (52.4%) and specificity (63.6%) of the test in samples with Ct values above 34. CONCLUSIONS.­: It is safe to use 1 primer set for the NP gene to identify SARS-CoV-2 in samples. However, samples with high Ct values may be considered inconclusive and retested to avoid false-positive diagnosis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nucleocapsídeo , Patologia Molecular , Fosfoproteínas/genética , RNA Viral/genética , Sensibilidade e Especificidade
7.
Mem. Inst. Oswaldo Cruz ; 117: e220072, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422143

RESUMO

BACKGROUND Patients with severe coronavirus disease 2019 (COVID-19) often present with coagulopathies and have high titres of circulating antibodies against viral proteins. OBJECTIVES Herein, we evaluated the association between D-dimer and circulating immunoglobulin levels against viral proteins in patients at different clinical stages of COVID-19. METHODS For this, we performed a cross-sectional study involving patients of the first wave of COVID-19 clinically classified as oligosymptomatic (n = 22), severe (n = 30), cured (n = 27) and non-infected (n = 9). Next, we measured in the plasma samples the total and fraction of immunoglobulins against the nucleoprotein (NP) and the receptor-binding domain (RBD) of the spike proteins by enzyme-linked immunosorbent assay (ELISA) assays. FINDINGS Patients with severe disease had a coagulation disorder with high levels of D-dimer as well as circulating IgG against the NP but not the RBD compared to other groups of patients. In addition, high levels of D-dimer and IgG against the NP and RBD were associated with disease severity among the patients in this study. MAIN CONCLUSIONS Our data suggest that IgG against NP and RBD participates in the worsening of COVID-19. Although the humoral response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is partially understood, and more efforts are needed to clarify gaps in the knowledge of this process.

8.
Mediators Inflamm ; 2021: 4651891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790690

RESUMO

Transforming growth factor beta (TGF-ß) is a cytokine with important involvement in biological processes related to the pathogenesis of sickle cell disease (SCD), including endothelial and vascular dysfunction, inflammation, and hematopoietic homeostasis. This study is aimed at investigating associations between levels of TGF-ß1 and classical laboratory biomarkers and inflammatory mediators, as well as the tissue inhibitor of metalloproteases-1 (TIMP-1) and matrix metalloproteinase-9 (MMP-9), in pediatric patients (n = 123) with SCD in steady state: 84 with sickle cell anemia (HbSS) and 39 with hemoglobin SC disease (HbSC). A healthy control (HC) group of 59 individuals was also included. Hematological and biochemical analyses were carried out using electronic methods. TGF-ß1, TIMP-1, and MMP-9 plasma quantifications were performed by ELISA. TGF-ß1 plasma levels were higher in HbSS individuals than in HbSC and HC. In individuals with HbSS, TGF-ß1 levels were positively correlated with red blood cells, hemoglobin, hematocrit, platelets, and TIMP-1. In addition, HbSS individuals with TGF-ß1 levels above the median (≥72.29 ng/mL) also presented increased monocyte counts and decreased albumin levels. In patients with HbSC, TGF-ß1 levels were positively correlated with leukocytes, eosinophils, lymphocytes, monocytes, and platelets, as well as levels of TIMP-1, VLDL-C, triglycerides, heme, and AST. Additionally, HbSC individuals with TGF-ß1 levels above the median (≥47.80 ng/mL) presented increased leukocyte and platelet counts, as well as increased levels of triglycerides, VLDL-C, MMP-9, and TIMP-1, and decreased HDL-C. Our findings suggest that TGF-ß1 may play important roles in vascular remodeling, vasculopathy, angiogenesis, and inflammation in pediatric patients with SCD.


Assuntos
Anemia Falciforme , Hemólise , Fator de Crescimento Transformador beta1 , Anemia Falciforme/diagnóstico , Biomarcadores/sangue , Criança , Humanos , Inflamação , Metaloproteinase 9 da Matriz , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta1/sangue
9.
Mem. Inst. Oswaldo Cruz ; 116: e210270, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360595

RESUMO

Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.

10.
Front Microbiol ; 9: 881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867796

RESUMO

During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where Leishmania is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by Leishmania remains undefined. Here we further investigate if interaction of Lutzomyia longipalpis salivary gland sonicate (SGS) with different host cells present during the initial inflammatory events regulate Leishmania infantum infectivity. Initially, we observed that incubation of human peripheral blood mononuclear cells (PBMC) with Lu. longipalpis SGS in the presence of L. infantum significantly increased IL-10 but did not alter expression of IFN-γ and TNF-α by CD4+ T cells induced by the parasite alone. Interestingly, incubation of PBMC with Lu. longipalpis SGS alone or in the presence of L. infantum resulted in increased IL-17 production. The presence of IL-17 is related to neutrophil recruitment and plays an important role at the site of infection. Here, we also observed increased migration of neutrophil using an in vitro chemotactic assay following incubation with supernatants from PBMC stimulated with L. infantum and Lu. longipalpis SGS. Neutrophil migration was abrogated following neutralization of IL-17 with specific antibodies. Moreover, culture of human neutrophils with L. infantum in the presence of Lu. longipalpis SGS promoted neutrophil apoptosis resulting in increased parasite viability. Neutrophils operate as the first line of defense in the early stages of infection and later interact with different cells, such as macrophages. The crosstalk between neutrophils and macrophages is critical to determine the type of specific immune response that will develop. Here, we observed that co-culture of human macrophages with autologous neutrophils previously infected in the presence of Lu. longipalpis SGS resulted in a higher infection rate, accompanied by increased production of TGF-ß and PGE2. Our results provide new insight into the contribution of Lu. longipalpis SGS to L. infantum-induced regulation of important inflammatory events, creating a favorable environment for parasite survival inside different host cells.

11.
Front Microbiol ; 9: 626, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675001

RESUMO

Lipophosphoglycan (LPG) is the major surface glycoconjugate of metacyclic Leishmania promastigotes and is associated with virulence in various species of this parasite. Here, we generated a LPG-deficient mutant of Leishmania infantum, the foremost etiologic agent of visceral leishmaniasis in Brazil. The L. infantum LPG-deficient mutant (Δlpg1) was obtained by homologous recombination and complemented via episomal expression of LPG1 (Δlpg1 + LPG1). Deletion of LPG1 had no observable effect on parasite morphology or on the presence of subcellular organelles, such as lipid droplets. While both wild-type and add-back parasites reached late phase in axenic cultures, the growth of Δlpg1 parasites was delayed. Additionally, the deletion of LPG1 impaired the outcome of infection in murine bone marrow-derived macrophages. Although no significant differences were observed in parasite load after 4 h of infection, survival of Δlpg1 parasites was significantly reduced at 72 h post-infection. Interestingly, L. infantum LPG-deficient mutants induced a strong NF-κB-dependent activation of the inducible nitric oxide synthase (iNOS) promoter compared to wild type and Δlpg1 + LPG1 parasites. In conclusion, the L. infantum Δlpg1 mutant constitutes a powerful tool to investigate the role(s) played by LPG in host cell-parasite interactions.

13.
Sci Rep ; 7(1): 14321, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084985

RESUMO

Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , PPAR gama/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Dinoprostona/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Fatores de Virulência
14.
Sci Rep ; 7(1): 4334, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659627

RESUMO

Visceral leishmaniasis (VL) remains a major public health problem worldwide. Cytokine balance is thought to play a critical role in the development of this disease. Here, we perform a prospective exploratory study addressing whether simultaneous assessment of circulating levels of different lipid mediators and cytokines could highlight specific pathways involved with VL pathogenesis. VL patients displayed substantial increases in serum levels of Prostaglandin F2α (PGF2α), Leukotriene B4 (LTB4), Resolvin D1 (RvD1), IL-1ß, IL-6, IL-8, IL-10, IL-12p70 and TNF-α compared with uninfected endemic control group, while exhibiting decreased levels of TGF-ß1. Hierarchical cluster analysis of the prospective changes in the expression level of theses parameters upon anti-Leishmania treatment initiation revealed that the inflammatory profile observed in active disease gradually changed over time and was generally reversed at day 30 of therapy. Furthermore, not only the individual concentrations of most of the inflammatory biomarkers changed upon treatment, but the correlations between those and several biochemical parameters used to characterize VL disease activity were also modified over time. These results demonstrate that an inflammatory imbalance hallmarks active VL disease and open perspective for manipulation of these pathways in future studies examining a potential host-directed therapy against VL.


Assuntos
Mediadores da Inflamação/metabolismo , Leishmania donovani , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/parasitologia , Adolescente , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Biomarcadores , Criança , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Mediadores da Inflamação/sangue , Leishmaniose Visceral/tratamento farmacológico , Masculino , Adulto Jovem
15.
J Immunol ; 196(4): 1865-73, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800873

RESUMO

Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leucotrieno B4/biossíntese , Macrófagos/imunologia , Macrófagos/parasitologia , Neutrófilos/imunologia , Degranulação Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Fibronectinas/imunologia , Humanos , Leishmania , Leishmania mexicana , Leucotrieno B4/imunologia , Microscopia Eletrônica de Transmissão , Ativação de Neutrófilo/imunologia
16.
J Stroke Cerebrovasc Dis ; 24(8): 1817-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957909

RESUMO

BACKGROUND: To investigate the effect of COX-2 polymorphism and its product, prostaglandin E2 (PGE2), on stroke risk in an endemic area for Chagas disease. In a separate cohort, to investigate the effect of COX-2 polymorphisms on the total burden of cerebral white matter disease. METHODS: Cases were outpatients with ischemic stroke; controls were stroke-free subjects from 2 outpatient clinics (heart failure and caregivers of a movement disorders clinic). We extracted DNA from total blood to investigate the rs20417 COX-2 polymorphism. Serologic tests (Enzime-linked immunosorbent assay) were performed to confirm Trypanosoma cruzi infection and to quantify PGE2 levels. In the Boston cohort, white matter hyperintensity volume (WMHv) was quantified on the admission brain magnetic resonance images of subjects with ischemic stroke, who also donated DNA for the COX-2 gene region analysis. RESULTS: We studied 44 patients with stroke and 96 controls (46 with heart failure and 50 caregivers) in the Brazilian cohort; and 788 stroke patients (302 cardioembolic and 486 noncardioembolic) in the Boston cohort. In the Brazilian cohort, rs20417 polymorphism was associated with both stroke (P = 5 × 10(-6)) and decreased PGE2 levels (P = 4 × 10(-5)); similarly, Chagas was associated with stroke (P = 4 × 10(-3)) and decreased PGE2 levels (P = 7 × 10(-3)). In the Boston cohort, rs20417 polymorphism was associated with increased WMHv among noncardioembolic (P = .037), but not among cardioembolic stroke patients. CONCLUSIONS: Variation in COX-2 gene is associated with both symptomatic and silent brain cerebrovascular disease. This candidate gene region should be tested in population-based samples.


Assuntos
Ciclo-Oxigenase 2/genética , Predisposição Genética para Doença/genética , Leucoencefalopatias/genética , Polimorfismo de Nucleotídeo Único/genética , Acidente Vascular Cerebral/genética , Idoso , Cuidadores/psicologia , Estudos de Coortes , Dinoprostona/sangue , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Leucoencefalopatias/sangue , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/sangue
17.
Parasit Vectors ; 7: 601, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526785

RESUMO

BACKGROUND: Eicosanoids and sand fly saliva have a critical role in the Leishmania infection. Here, we evaluated the effect of Lutzomyia longipalpis salivary gland sonicate (SGS) on neutrophil and monocyte recruitment and activation of eicosanoid production in a murine model of inflammation. METHODS: C57BL/6 mice were inoculated intraperitonealy with Lutzomyia longipalpis SGS or Leishmania infantum or both, followed by analyses of cell recruitment, parasite load and eicosanoid production. RESULTS: Intraperitoneal injection of Lutzomyia longipalpis SGS together with Leishmania infantum induced an early increased parasite viability in monocytes and neutrophils. L. longipalpis SGS increased prostaglandin E2 (PGE2), but reduced leukotriene B4 (LTB4) production ex vivo in peritoneal leukocytes. In addition, the pharmacological inhibition of cyclooxygenase 2 (COX-2) with NS-398 decreased parasite viability inside macrophages during Leishmania infection in the presence of L. longipalpis SGS arguing that PGE2 production is associated with diminished parasite killing. CONCLUSIONS: These findings indicate that L. longipalpis SGS is a critical factor driving immune evasion of Leishmania through modulation of PGE2/LTB4 axis, which may represent an important mechanism on establishment of the infection.


Assuntos
Dinoprostona/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Leucotrieno B4/imunologia , Psychodidae/imunologia , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Leishmaniose Visceral/parasitologia , Leucócitos/parasitologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrobenzenos/farmacologia , Psychodidae/parasitologia , Glândulas Salivares/imunologia , Sulfonamidas/farmacologia
18.
J Infect Dis ; 210(12): 1951-61, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24850789

RESUMO

Lipid bodies (LB; lipid droplets) are cytoplasmic organelles involved in lipid metabolism. Mammalian LBs display an important role in host-pathogen interactions, but the role of parasite LBs in biosynthesis of prostaglandin F2α (PGF2α) has not been investigated. We report herein that LBs increased in abundance during development of Leishmania infantum chagasi to a virulent metacyclic stage, as did the expression of PGF2α synthase (PGFS). The amount of parasite LBs and PGF2α were modulated by exogenous arachidonic acid. During macrophage infection, LBs were restricted to parasites inside the parasitophorous vacuoles (PV). We detected PGF2α receptor (FP) on the Leishmania PV surface. The blockage of FP with AL8810, a selective antagonist, hampered Leishmania infection, whereas the irreversible inhibition of cyclooxygenase with aspirin increased the parasite burden. These data demonstrate novel functions for parasite-derived LBs and PGF2α in the cellular metabolism of Leishmania and its evasion of the host immune response.


Assuntos
Dinoprosta/metabolismo , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos/parasitologia , Carga Parasitária , Animais , Masculino , Mesocricetus , Camundongos Endogâmicos BALB C
19.
J Infect Dis ; 210(4): 656-66, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24634497

RESUMO

Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis-induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).


Assuntos
Leishmania mexicana/metabolismo , Leishmaniose Cutânea/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Antígenos de Superfície/metabolismo , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptor 2 Toll-Like/metabolismo
20.
Salvador; s.n; 2013. 138 p. ilus.
Tese em Português | LILACS | ID: lil-710715

RESUMO

Corpúsculos lipídicos são organelas citoplasmáticas envolvidas na produção de eicosanoides em leucócitos. Eicosanoides como as prostaglandinas têm sido envolvidos no controle da resposta inflamatória e imunológica. A saliva de Lutzomyia longipalpis participa do estabelecimento e desenvolvimento da doença pela modulação das respostas hemostática, imunológica e inflamatória do hospedeiro favorecendo a infecção. Entretanto, o papel dos eicosanoides nos momentos iniciais da infecção por Leishmania ainda não foi esclarecido, assim como a participação da saliva neste contexto. Aqui, nós investigamos o papel dos eicosanoides induzidos pela saliva de L. longipalpis e produzidos pela Leishmania infantum chagasi na infecção. O sonicado de glândula salivar (SGS) de L. longipalis induziu um aumento no número de CLs em macrófagos de maneira dose e tempo dependente, o qual esteve correlacionado com o aumento de PGE2 nos sobrenadante de cultura. As enzimas COX-2 e PGE- intase foram co-localizadas nos CLs induzidos pela saliva e a produção de PGE2 foi reduzida pelo tratamento com NS-398, um inibidor de COX-2. Nós verificamos que o SGS rapidamente estimulou a fosforilação de ERK-1/2 e PKC-α e a inibição farmacológica dessas vias inibiu a produção de PGE2 pelos macrófagos estimulados com SGS. Em seguida, nós avaliamos o efeito da saliva de L. longipalpis sobre a produção de eicosanoides durante a infecção por L. i. chagasi no modelo peritoneal murino. Nós observamos que a saliva aumentou a viabilidade intracelular de L. i. chagasi tanto em neutrófilos como em neutrófilos recrutados para a cavidade peritoneal. As células recrutadas para cavidade peritoneal apresentaram maiores níveis da relação PGE2/LTB4 e o pré-tratamento com NS-398 reverteu o efeito da saliva sobre a viabilidade intracelular dos parasitas. Parasitas como Leishmania são capazes de produzir PGs utilizando uma maquinaria enzimática própria. Neste estudo nós descrevemos a dinâmica de formação e a distribuição celular dos CLs em L. i. chagasi bem como a participação desta organela na produção de PGs. A quantidade de CLs aumentou durante a metaciclogênese assim como a expressão de PGF2α sintase (PGFS), sendo esta enzima co-localizada nos CLs. A adição de ácido araquidônico AA à cultura de L. i. chagasi aumentou a quantidade de CLs por parasita, bem como a secreção de PGF2α. A infecção com as diferentes formas de L. i. chagasi não foi capaz de estimular a formação de CLs na célula hospedeira. Por outro lado, os parasitas intracelulares apresentaram maiores quantidades de CLs. A infecção estimulou uma rápida expressão de COX-2, mas não foi detectado aumento na produção de PGF2α nos sobrenadantes. Por fim, nós verificamos a presença do receptor de PGF2α (FP) nos vacúolos parasitóforos de macrófagos infectados com L. i. chagasi. O prétratamento das células com um antagonista do receptor FP inibiu os índices de infecção de forma dose-dependente. Em conjunto, nossos dados apontam que os eicosanoides desempenham um papel crucial para evasão da resposta imune durante os momentos iniciais da infecção por L. i. chagasi com diferentes contribuições do parasita, do vetor e da célula hospedeira neste contexto.


Diffuse Cutaneous Leishmaniasis (LCD) is a rare clinical manifestation of Leishmaniasis, characterized by a number of macrophages heavily parasitized and low inflammatory reaction. In Brazil, Leishmania (Leishmania) amazonensis is the main specie involved in LCD cases. It has been described that the exposure and recognition of phosphatidylserine (PS) on the surface of apoptotic cells phagocytosed by macrophages is a macrophage deactivation mechanism dependent on TGF-pi and PGE2 (Fadok et al. 1998). Morover, it was demonstrated by Barcinski and colleagues that L. amazonensis amastigotes expose PS on its surface, in a mechanism called ’’Apoptotic Mimicry." In this context, our goal was to investigate the exposure of PS on the surface of L. amazonensis isolates obtained from LCD patients and its role during the infection of macrophages. Initially, peritoneal macrophages from FI mice (BALB/c x C57BL/6) stimulated with thioglycolate were infected with different L. amazonensis strains isolated from patients with Localized Cutaneous Leishmaniasis (LCL) or LCD. The exposure of PS on the surface of amastigotes was determined by flow cytometry using staining to annexin V and propidium iodide. Isolates from LCD patients showed higher PS exposure than the isolates from LCL patients 24 hours after infection. Then, we evaluated whether the differences of PS exposure in amastigotes would correlate with the infectivity of different isolates. Percentage of infected macrophages and infection index were higher in cultures using amastigotes from LCD patients compared to the ones infected with amastigotes from LCL cases. Furthermore, cultures infected with LCD isolates showed no difference to the LCL isolates regarding TGF>pl and nitric oxide production, suggesting that other immuneregulatory mechanisms are involved in this process...


Assuntos
Humanos , Células Sanguíneas/imunologia , Eicosanoides/antagonistas & inibidores , Leishmania/patogenicidade , Psychodidae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...