Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Am J Med Genet A ; : e63646, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702915

RESUMO

Molecular genetics enables more precise diagnoses of skeletal dysplasia and other skeletal disorders (SDs). We investigated the clinical utility of multigene panel testing for 5011 unrelated individuals with SD in the United States (December 2019-April 2022). Median (range) age was 8 (0-90) years, 70.5% had short stature and/or disproportionate growth, 27.4% had a positive molecular diagnosis (MDx), and 30 individuals received two MDx. Genes most commonly contributing to MDx were FGFR3 (16.9%), ALPL (13.0%), and COL1A1 (10.3%). Most of the 112 genes associated with ≥1 MDx were primarily involved in signal transduction (n = 35), metabolism (n = 23), or extracellular matrix organization (n = 17). There were implications associated with specific care/treatment options for 84.4% (1158/1372) of MDx-positive individuals; >50% were linked to conditions with targeted therapy approved or in clinical development, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and mucopolysaccharidosis. Forty individuals with initially inconclusive results became MDx-positive following family testing. Follow-up mucopolysaccharidosis enzyme activity testing was positive in 14 individuals (10 of these were not MDx-positive). Our findings showed that inclusion of metabolic genes associated with SD increased the clinical utility of a gene panel and confirmed that integrated use of comprehensive gene panel testing with orthogonal testing reduced the burden of inconclusive results.

2.
Epilepsia Open ; 9(1): 439-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071479

RESUMO

The identification of numerous genetically based epilepsies has resulted in the widespread use of genetic testing to inform epilepsy etiology. Our study aims to investigate whether a difference exists in the diagnostic evaluation and healthcare-related cost expenditures of pediatric patients with epilepsy of unknown etiology who receive a genetic diagnosis through multigene epilepsy panel (MEP) testing and comparing those who underwent early (EGT) versus late genetic testing (LGT). Testing was defined as early (less than 1 year), or late (more than 1 year), following clinical epilepsy diagnosis. A retrospective chart review of pediatric individuals (1-17 years) with epilepsy of unknown etiology who underwent multigene epilepsy panel (MEP) testing identified 28 of 226 (12%) individuals with a pathogenic epilepsy variant [EGT n = 8 (29%); LGT n = 20 (71%)]. The average time from clinical epilepsy diagnosis to genetic diagnosis was 0.25 years (EGT), compared with 7.1 years (LGT). The EGT cohort underwent fewer metabolic tests [EGT n = 0 (0%); LGT n = 16 (80%) (P < 0.01)] and invasive procedures [EGT n = 0 (0%); LGT n = 5 (25%) (P = 0.06)]. Clinical management changes implemented due to genetic diagnosis occurred in 10 (36%) patients [EGT n = 2 (25%); LGT n = 8 (40%) (P = 0.76)]. Early genetic testing with a MEP in pediatric patients with epilepsy of unknown etiology who receive a genetic diagnosis is associated with fewer non-diagnostic tests and invasive procedures and reduced estimated overall healthcare-related costs. PLAIN LANGUAGE SUMMARY: This study aims to investigate whether a difference exists in the diagnostic evaluation and cost expenditures of pediatric patients (1-17 years) with epilepsy of unknown cause who are ultimately diagnosed with a genetic cause of epilepsy through multigene epilepsy panel testing and comparing those who underwent early testing (less than 1 year) versus late testing (more than 1 year) after clinical epilepsy diagnosis. Of the 28 of 226 individuals with a confirmed genetic cause of epilepsy on multigene epilepsy panel testing, performing early testing was associated with fewer non-diagnostic tests, fewer invasive procedures and reduced estimated overall healthcare-related costs.


Assuntos
Epilepsia , Testes Genéticos , Humanos , Criança , Estudos Retrospectivos , Testes Genéticos/métodos , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/complicações
3.
JAMA Netw Open ; 6(10): e2339571, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37878314

RESUMO

Importance: Variants of uncertain significance (VUSs) are rampant in clinical genetic testing, frustrating clinicians, patients, and laboratories because the uncertainty hinders diagnoses and clinical management. A comprehensive assessment of VUSs across many disease genes is needed to guide efforts to reduce uncertainty. Objective: To describe the sources, gene distribution, and population-level attributes of VUSs and to evaluate the impact of the different types of evidence used to reclassify them. Design, Setting, and Participants: This cohort study used germline DNA variant data from individuals referred by clinicians for diagnostic genetic testing for hereditary disorders. Participants included individuals for whom gene panel testing was conducted between September 9, 2014, and September 7, 2022. Data were analyzed from September 1, 2022, to April 1, 2023. Main Outcomes and Measures: The outcomes of interest were VUS rates (stratified by age; clinician-reported race, ethnicity, and ancestry groups; types of gene panels; and variant attributes), percentage of VUSs reclassified as benign or likely benign vs pathogenic or likely pathogenic, and enrichment of evidence types used for reclassifying VUSs. Results: The study cohort included 1 689 845 individuals ranging in age from 0 to 89 years at time of testing (median age, 50 years), with 1 203 210 (71.2%) female individuals. There were 39 150 Ashkenazi Jewish individuals (2.3%), 64 730 Asian individuals (3.8%), 126 739 Black individuals (7.5%), 5539 French Canadian individuals (0.3%), 169 714 Hispanic individuals (10.0%), 5058 Native American individuals (0.3%), 2696 Pacific Islander individuals (0.2%), 4842 Sephardic Jewish individuals (0.3%), and 974 383 White individuals (57.7%). Among all individuals tested, 692 227 (41.0%) had at least 1 VUS and 535 385 (31.7%) had only VUS results. The number of VUSs per individual increased as more genes were tested, and most VUSs were missense changes (86.6%). More VUSs were observed per sequenced gene in individuals who were not from a European White population, in middle-aged and older adults, and in individuals who underwent testing for disorders with incomplete penetrance. Of 37 699 unique VUSs that were reclassified, 30 239 (80.2%) were ultimately categorized as benign or likely benign. A mean (SD) of 30.7 (20.0) months elapsed for VUSs to be reclassified to benign or likely benign, and a mean (SD) of 22.4 (18.9) months elapsed for VUSs to be reclassified to pathogenic or likely pathogenic. Clinical evidence contributed most to reclassification. Conclusions and Relevance: This cohort study of approximately 1.6 million individuals highlighted the need for better methods for interpreting missense variants, increased availability of clinical and experimental evidence for variant classification, and more diverse representation of race, ethnicity, and ancestry groups in genomic databases. Data from this study could provide a sound basis for understanding the sources and resolution of VUSs and navigating appropriate next steps in patient care.


Assuntos
Doenças Genéticas Inatas , Testes Genéticos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Indígena Americano ou Nativo do Alasca , Canadá , Estudos de Coortes , Etnicidade/genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/etnologia , Doenças Genéticas Inatas/genética , Grupos Raciais/etnologia , Grupos Raciais/genética
4.
Kidney Int Rep ; 8(10): 2117-2125, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37850022

RESUMO

Introduction: Frasier syndrome (FS) is a rare Mendelian form of nephrotic syndrome (NS) caused by variants which disrupt the proper splicing of WT1. This key transcription factor gene is alternatively spliced at exon 9 to produce 2 isoforms ("KTS+" and "KTS-"), which are normally expressed in the kidney at a ∼2:1 (KTS+:KTS-) ratio. FS results from variants that reduce this ratio by disrupting the splice donor of the KTS+ isoform. FS is extremely rare, and it is unclear whether any variants beyond the 8 already known could cause FS. Methods: To prospectively identify other splicing-disruptive variants, we leveraged a massively parallel splicing assay. We tested every possible single nucleotide variant (n = 519) in and around WT1 exon 9 for effects upon exon inclusion and KTS+/- ratio. Results: Splice disruptive variants (SDVs) made up 11% of the tested point variants overall and were tightly concentrated near the canonical acceptor and the KTS+/- alternate donors. Our map successfully identified all 8 known FS or focal segmental glomerulosclerosis (FSGS) variants and 16 additional novel variants which were comparably disruptive to these known pathogenic variants. We also identified 19 variants that, conversely, increased the KTS+/KTS- ratio, of which 2 are observed in unrelated individuals with 46,XX ovotesticular disorder of sex development (46,XX OTDSD). Conclusion: This splicing effect map can serve as functional evidence to guide the clinical interpretation of newly observed variants in and around WT1 exon 9.

5.
Genet Med ; 25(12): 100947, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37534744

RESUMO

PURPOSE: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact. METHODS: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021. RESULTS: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns). CONCLUSION: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Humanos , Testes Genéticos/métodos , Genômica , Exoma/genética , América do Norte
6.
Am J Med Genet C Semin Med Genet ; 193(3): e32057, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507620

RESUMO

The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.


Assuntos
Inteligência Artificial , Laboratórios Clínicos , Humanos , Genômica/métodos , Testes Genéticos , Fenótipo
8.
Am J Hum Genet ; 110(4): 551-564, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933558

RESUMO

DNA variants that arise after conception can show mosaicism, varying in presence and extent among tissues. Mosaic variants have been reported in Mendelian diseases, but further investigation is necessary to broadly understand their incidence, transmission, and clinical impact. A mosaic pathogenic variant in a disease-related gene may cause an atypical phenotype in terms of severity, clinical features, or timing of disease onset. Using high-depth sequencing, we studied results from one million unrelated individuals referred for genetic testing for almost 1,900 disease-related genes. We observed 5,939 mosaic sequence or intragenic copy number variants distributed across 509 genes in nearly 5,700 individuals, constituting approximately 2% of molecular diagnoses in the cohort. Cancer-related genes had the most mosaic variants and showed age-specific enrichment, in part reflecting clonal hematopoiesis in older individuals. We also observed many mosaic variants in genes related to early-onset conditions. Additional mosaic variants were observed in genes analyzed for reproductive carrier screening or associated with dominant disorders with low penetrance, posing challenges for interpreting their clinical significance. When we controlled for the potential involvement of clonal hematopoiesis, most mosaic variants were enriched in younger individuals and were present at higher levels than in older individuals. Furthermore, individuals with mosaicism showed later disease onset or milder phenotypes than individuals with non-mosaic variants in the same genes. Collectively, the large compendium of variants, disease correlations, and age-specific results identified in this study expand our understanding of the implications of mosaic DNA variation for diagnosis and genetic counseling.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Variações do Número de Cópias de DNA/genética , Testes Genéticos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação
9.
Mol Genet Genomic Med ; 10(12): e2072, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251442

RESUMO

BACKGROUND: Some clinically important genetic variants are not easily evaluated with next-generation sequencing (NGS) methods due to technical challenges arising from high- similarity copies (e.g., PMS2, SMN1/SMN2, GBA1, HBA1/HBA2, CYP21A2), repetitive short sequences (e.g., ARX polyalanine repeats, FMR1 AGG interruptions in CGG repeats, CFTR poly-T/TG repeats), and other complexities (e.g., MSH2 Boland inversions). METHODS: We customized our NGS processes to detect the technically challenging variants mentioned above with adaptations including target enrichment and bioinformatic masking of similar sequences. Adaptations were validated with samples of known genotypes. RESULTS: Our adaptations provided high-sensitivity and high-specificity detection for most of the variants and provided a high-sensitivity primary assay to be followed with orthogonal disambiguation for the others. The sensitivity of the NGS adaptations was 100% for all of the technically challenging variants. Specificity was 100% for those in PMS2, GBA1, SMN1/SMN2, and HBA1/HBA2, and for the MSH2 Boland inversion; 97.8%-100% for CYP21A2 variants; and 85.7% for ARX polyalanine repeats. CONCLUSIONS: NGS assays can detect technically challenging variants when chemistries and bioinformatics are jointly refined. The adaptations described support a scalable, cost-effective path to identifying all clinically relevant variants within a single sample.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Hemoglobinas Glicadas , Proteína 2 Homóloga a MutS , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genótipo , Esteroide 21-Hidroxilase
10.
JAMA Neurol ; 79(12): 1267-1276, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36315135

RESUMO

Importance: It is currently unknown how often and in which ways a genetic diagnosis given to a patient with epilepsy is associated with clinical management and outcomes. Objective: To evaluate how genetic diagnoses in patients with epilepsy are associated with clinical management and outcomes. Design, Setting, and Participants: This was a retrospective cross-sectional study of patients referred for multigene panel testing between March 18, 2016, and August 3, 2020, with outcomes reported between May and November 2020. The study setting included a commercial genetic testing laboratory and multicenter clinical practices. Patients with epilepsy, regardless of sociodemographic features, who received a pathogenic/likely pathogenic (P/LP) variant were included in the study. Case report forms were completed by all health care professionals. Exposures: Genetic test results. Main Outcomes and Measures: Clinical management changes after a genetic diagnosis (ie, 1 P/LP variant in autosomal dominant and X-linked diseases; 2 P/LP variants in autosomal recessive diseases) and subsequent patient outcomes as reported by health care professionals on case report forms. Results: Among 418 patients, median (IQR) age at the time of testing was 4 (1-10) years, with an age range of 0 to 52 years, and 53.8% (n = 225) were female individuals. The mean (SD) time from a genetic test order to case report form completion was 595 (368) days (range, 27-1673 days). A genetic diagnosis was associated with changes in clinical management for 208 patients (49.8%) and usually (81.7% of the time) within 3 months of receiving the result. The most common clinical management changes were the addition of a new medication (78 [21.7%]), the initiation of medication (51 [14.2%]), the referral of a patient to a specialist (48 [13.4%]), vigilance for subclinical or extraneurological disease features (46 [12.8%]), and the cessation of a medication (42 [11.7%]). Among 167 patients with follow-up clinical information available (mean [SD] time, 584 [365] days), 125 (74.9%) reported positive outcomes, 108 (64.7%) reported reduction or elimination of seizures, 37 (22.2%) had decreases in the severity of other clinical signs, and 11 (6.6%) had reduced medication adverse effects. A few patients reported worsening of outcomes, including a decline in their condition (20 [12.0%]), increased seizure frequency (6 [3.6%]), and adverse medication effects (3 [1.8%]). No clinical management changes were reported for 178 patients (42.6%). Conclusions and Relevance: Results of this cross-sectional study suggest that genetic testing of individuals with epilepsy may be materially associated with clinical decision-making and improved patient outcomes.


Assuntos
Epilepsia , Testes Genéticos , Humanos , Feminino , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Estudos Transversais , Testes Genéticos/métodos , Epilepsia/tratamento farmacológico , Epilepsia/genética , Convulsões/genética
11.
Kidney360 ; 3(5): 900-909, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36128480

RESUMO

Background: Despite increasing recognition that CKD may have underlyi ng genetic causes, genetic testing remains limited. This study evaluated the diagnostic yield and phenotypic spectrum of CKD in individuals tested through the KIDNEYCODE sponsored genetic testing program. Methods: Unrelated individuals who received panel testing (17 genes) through the KIDNEYCODE sponsored genetic testing program were included. Individuals had to meet at least one of the following eligibility criteria: eGFR ≤90 ml/min per 1.73m2 and hematuria or a family history of kidney disease; or suspected/biopsy-confirmed Alport syndrome or FSGS in tested individuals or relatives. Results: Among 859 individuals, 234 (27%) had molecular diagnoses in genes associated with Alport syndrome (n=209), FSGS (n=12), polycystic kidney disease (n=6), and other disorders (n=8). Among those with positive findings in a COL4A gene, the majority were in COL4A5 (n=157, 72 hemizygous male and 85 heterozygous female individuals). A positive family history of CKD, regardless of whether clinical features were reported, was more predictive of a positive finding than was the presence of clinical features alone. For the 248 individuals who had kidney biopsies, a molecular diagnosis was returned for 49 individuals (20%). Most (n=41) individuals had a molecular diagnosis in a COL4A gene, 25 of whom had a previous Alport syndrome clinical diagnosis, and the remaining 16 had previous clinical diagnoses including FSGS (n=2), thin basement membrane disease (n=9), and hematuria (n=1). In total, 491 individuals had a previous clinical diagnosis, 148 (30%) of whom received a molecular diagnosis, the majority (89%, n=131) of which were concordant. Conclusions: Although skewed to identify individuals with Alport syndrome, these findings support the need to improve access to genetic testing for patients with CKD-particularly in the context of family history of kidney disease, hematuria, and hearing loss.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Insuficiência Renal Crônica , Colágeno Tipo IV/genética , Feminino , Glomerulosclerose Segmentar e Focal/complicações , Hematúria/diagnóstico , Humanos , Masculino , Nefrite Hereditária/diagnóstico , Insuficiência Renal Crônica/diagnóstico
12.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35917817

RESUMO

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Haploinsuficiência/genética , Humanos
13.
Front Immunol ; 13: 906540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757720

RESUMO

Genetic disorders that impair the immune system, known as Primary Immunodeficiencies (PI), include over 450 single-gene inborn errors of immunity. Timely and appropriate diagnosis and treatment is vital to quality of life (QOL) and sometimes survival, as patients are susceptible to frequent, persistent, severe, and sometimes life-threatening infections or autoimmunity. Suspected PI patients that do not have a genetic diagnosis often endure a prolonged, onerous, inefficient, and expensive experience, known as a diagnostic odyssey. The resulting diagnostic delay prohibits proper disease management and treatment, causing unnecessary distress and diminished QOL. Next-generation sequencing (NGS) offers relief from the distress of the diagnostic odyssey, but because of cost and barriers to access, it is regularly unobtainable. The Jeffrey Modell Foundation (JMF) introduced "Jeffrey's Insights", a no-charge genetic sequencing pilot program, in January 2019 for patients within the Jeffrey Modell Centers Network (JMCN) with an underlying PI, but no genetic diagnosis. Building on the success of the pilot program, JMF expanded it globally to more than 400 Centers in the JMCN in early 2020. The most current version of Invitae's PI Panel available was used for this program. All participating clinicians were invited to complete a brief questionnaire assessing prior impediments to access and post-sequencing alterations in disease management and treatment. A total of 1,398 patients were tested, with 20.3% receiving a molecular diagnosis and many more receiving helpful diagnostic leads. Results obtained from genetic sequencing led to an alteration of clinical diagnosis, disease management, treatment, and genetic counseling in 39%, 38%, 35%, and 53% of patients, respectively. The global expansion of this program further underscores the crucial need for NGS for PI, along with its efficiency and potential cost savings. The results of this program to date further define rationale for the availability of comprehensive diagnostic NGS for patients with PI when requisitioned by an expert immunologist.


Assuntos
Diagnóstico Tardio , Qualidade de Vida , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação
14.
Reprod Biomed Online ; 45(1): 125-134, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523710

RESUMO

RESEARCH QUESTION: What is the genetic cause of sporadic and recurrent pregnancy loss and does the frequency and nature of chromosomal abnormalities play a role? Types and frequency of all identifiable chromosomal abnormalities were determined to inform our understanding, medical management and recurrence risk for patients experiencing pregnancy loss. DESIGN: Genome-wide single-nucleotide polymorphism-based chromosomal microarray (SNP-CMA) were used to evaluate 24,900 products of conception samples from various forms of pregnancy losses. RESULTS: Sporadic miscarriage (64.7%) or recurrent pregnancy loss (RPL) (22%) were the most common referrals. Clinically significant abnormalities were observed in 55.8% (13,910) of samples, variants of uncertain significance in 1.8%, and normal results in 42.4%. In addition to autosomal trisomies (in 36% of samples), polyploidy and large segmental imbalances were identified in 7.8% and 2.8% of samples, respectively. Analysis of sequential samples from 1103 patients who had experienced RPL provided important insight into possible predispositions to RPL. CONCLUSIONS: This expansive chromosomal microarray analyses of pregnancy loss samples illuminates our understanding of the full spectrum, relative frequencies and the role of genomic abnormalities in pregnancy loss. The empiric observations described here provide useful insight for clinicians and highlight the importance of high-resolution genomic testing for comprehensive evaluation and risk assessment of individuals experiencing pregnancy loss.


Assuntos
Aborto Habitual , Aborto Induzido , Aborto Habitual/genética , Aberrações Cromossômicas , Feminino , Testes Genéticos , Genômica , Humanos , Gravidez
15.
Am J Med Genet A ; 188(9): 2642-2651, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35570716

RESUMO

Guidelines for variant interpretation include criteria for incorporating phenotype evidence, but this evidence is inconsistently applied. Systematic approaches to using phenotype evidence are needed. We developed a method for curating disease phenotypes as highly or moderately predictive of variant pathogenicity based on the frequency of their association with disease-causing variants. To evaluate this method's accuracy, we retrospectively reviewed variants with clinical classifications that had evolved from uncertain to definitive in genes associated with curated predictive phenotypes. To demonstrate the clinical validity and utility of this approach, we compared variant classifications determined with and without predictive phenotype evidence. The curation method was accurate for 93%-98% of eligible variants. Among variants interpreted using highly predictive phenotype evidence, the percentage classified as pathogenic or likely pathogenic was 80%, compared with 46%-54% had the evidence not been used. Positive results among individuals harboring variants with highly predictive phenotype-guided interpretations would have been missed in 25%-37% of diagnostic tests and 39%-50% of carrier screens had other approaches to phenotype evidence been used. In summary, predictive phenotype evidence associated with specific curated genes can be systematically incorporated into variant interpretation to reduce uncertainty and increase the clinical utility of genetic testing.


Assuntos
Testes Genéticos , Variação Genética , Testes Genéticos/métodos , Fenótipo , Estudos Retrospectivos
16.
Epilepsia ; 63(7): e68-e73, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474188

RESUMO

This study assessed the effectiveness of genetic testing in shortening the time to diagnosis of late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease. Individuals who received epilepsy gene panel testing through Behind the Seizure® , a sponsored genetic testing program (Cohort A), were compared to children outside of the sponsored testing program during the same period (Cohort B). Two cohorts were analyzed: children aged ≥24 to ≤60 months with unprovoked seizure onset at ≥24 months between December 2016 and January 2020 (Cohort 1) and children aged 0 to ≤60 months at time of testing with unprovoked seizure onset at any age between February 2019 and January 2020 (Cohort 2). The diagnostic yield in Cohort 1A (n = 1814) was 8.4% (n = 153). The TPP1 diagnostic yield within Cohort 1A was 2.9-fold higher compared to Cohort 1B (1.0%, n = 18/1814 vs. .35%, n = 8/2303; p = .0157). The average time from first symptom to CLN2 disease diagnosis was significantly shorter than previously reported (9.8 vs. 22.7 months, p < .001). These findings indicate that facilitated access to early epilepsy gene panel testing helps to increase diagnostic yield for CLN2 disease and shortens the time to diagnosis, enabling earlier intervention.


Assuntos
Epilepsia , Lipofuscinoses Ceroides Neuronais , Aminopeptidases/genética , Criança , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos , Humanos , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Convulsões/genética , Serina Proteases/genética , Tripeptidil-Peptidase 1
17.
Reprod Biomed Online ; 44(2): 228-238, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35039224

RESUMO

RESEARCH QUESTION: Is FAST-SeqS an accurate methodology for preimplantation genetic testing for whole-chromosome aneuploidy (PGT-A)? What additional types of chromosomal abnormalities can be assessed? What are the observed aneuploidy rates in a large clinical cohort? DESIGN: FAST-SeqS, a next-generation sequencing (NGS)-based assay amplifying genome-wide LINE1 repetitive sequences, was validated using reference samples. Sensitivity and specificity were calculated. Clinically derived trophectoderm biopsies submitted for PGT-A were assessed, and aneuploidy and mosaicism rates among biopsies were determined. Clinician-provided outcome rates were calculated. RESULTS: Sensitivity and specificity were over 95% for all aneuploidy types tested in the validation. Comparison of FAST-SeqS with VeriSeq showed high concordance (98.5%). Among embryos with actionable results (n = 182,827), 46.2% were aneuploid. Whole-chromosome aneuploidies were most observed (72.9% without or 8.7% with a segmental aneuploidy), with rates increasing with egg age; segmental aneuploidy rates did not. Segmental aneuploidy (n = 20,557) was observed on all chromosomes (most commonly deletions), with frequencies associated with chromosome length. Mosaic-only abnormalities constituted 10.1% (n = 3862/38145) of samples. Abnormal ploidy constituted 1.8% (n = 2370/128,991) of samples, triploidy being the most common (73.6%). Across 3297 frozen embryo transfers, the mean clinical pregnancy rate was 62% (range 38-80%); the mean combined ongoing pregnancy and live birth rate was 57% (range 38-72%). CONCLUSION: FAST-SeqS is a clinically reliable and scalable method for PGT-A, is comparable to whole-genome amplification-based platforms, and detects additional information related to ploidy using SNP analysis. Results suggest ongoing benefit of PGT-A using FAST-SeqS, consistent with other platforms.


Assuntos
Diagnóstico Pré-Implantação , Aneuploidia , Biópsia , Blastocisto/patologia , Feminino , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Gravidez , Diagnóstico Pré-Implantação/métodos
18.
J Bone Miner Res ; 37(2): 202-214, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34633109

RESUMO

X-linked hypophosphatemia (XLH), a dominant disorder caused by pathogenic variants in the PHEX gene, affects both sexes of all ages and results in elevated serum fibroblast growth factor 23 (FGF23) and below-normal serum phosphate. In XLH, rickets, osteomalacia, short stature, and lower limb deformity may be present with muscle pain and/or weakness/fatigue, bone pain, joint pain/stiffness, hearing difficulty, enthesopathy, osteoarthritis, and dental abscesses. Invitae and Ultragenyx collaborated to provide a no-charge sponsored testing program using a 13-gene next-generation sequencing panel to confirm clinical XLH or aid diagnosis of suspected XLH/other genetic hypophosphatemia. Individuals aged ≥6 months with clinical XLH or suspected genetic hypophosphatemia were eligible. Of 831 unrelated individuals tested between February 2019 and June 2020 in this cross-sectional study, 519 (62.5%) individuals had a pathogenic or likely pathogenic variant in PHEX (PHEX-positive). Among the 312 PHEX-negative individuals, 38 received molecular diagnoses in other genes, including ALPL, CYP27B1, ENPP1, and FGF23; the remaining 274 did not have a molecular diagnosis. Among 319 patients with a provider-reported clinical diagnosis of XLH, 88.7% (n = 283) had a reportable PHEX variant; 81.5% (n = 260) were PHEX-positive. The most common variant among PHEX-positive individuals was an allele with both the gain of exons 13-15 and c.*231A>G (3'UTR variant) (n = 66/519). Importantly, over 80% of copy number variants would have been missed by traditional microarray analysis. A positive molecular diagnosis in 41 probands (4.9%; 29 PHEX positive, 12 non-PHEX positive) resulted in at least one family member receiving family testing. Additional clinical or family member information resulted in variant(s) of uncertain significance (VUS) reclassification to pathogenic/likely pathogenic (P/LP) in 48 individuals, highlighting the importance of segregation and clinical data. In one of the largest XLH genetic studies to date, 65 novel PHEX variants were identified and a high XLH diagnostic yield demonstrated broad insight into the genetic basis of XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Estudos Transversais , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Testes Genéticos , Humanos , Hipofosfatemia/genética , Lactente , Masculino , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética
19.
Neurol Genet ; 8(1): e650, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34926809

RESUMO

BACKGROUND AND OBJECTIVES: Although genetic testing among children with epilepsy has demonstrated clinical utility and become a part of routine testing, studies in adults are limited. This study reports the diagnostic yield of genetic testing in adults with epilepsy. METHODS: Unrelated individuals aged 18 years and older who underwent diagnostic genetic testing for epilepsy using a comprehensive, next-generation sequencing-based, targeted gene panel (range 89-189 genes) were included in this cross-sectional study. Clinical information, provided at the discretion of the ordering clinician, was reviewed and analyzed. Diagnostic yield was calculated for all individuals including by age at seizure onset and comorbidities based on clinician-reported information. The proportion of individuals with clinically actionable genetic findings, including instances when a specific treatment would be indicated or contraindicated due to a diagnostic finding, was calculated. RESULTS: Among 2,008 individuals, a diagnostic finding was returned for 218 adults (10.9%), with clinically actionable findings in 55.5% of diagnoses. The highest diagnostic yield was in adults with seizure onset during infancy (29.6%, 0-1 year), followed by in early childhood (13.6%, 2-4 years), late childhood (7.0%, 5-10 years), adolescence (2.4%, 11-17 years), and adulthood (3.7%, ≥18 years). Comorbid intellectual disability (ID) or developmental delay resulted in a high diagnostic yield (16.0%), most notably for females (19.6% in females vs 12.3% in males). Among individuals with pharmacoresistant epilepsy, 13.5% had a diagnostic finding, and of these, 57.4% were clinically actionable genetic findings. DISCUSSION: These data reinforce the utility of genetic testing for adults with epilepsy, particularly for those with childhood-onset seizures, ID, and pharmacoresistance. This is an important consideration due to longer survival and the complexity of the transition from pediatric to adult care. In addition, more than half of diagnostic findings in this study were considered clinically actionable, suggesting that genetic testing could have a direct impact on clinical management and outcomes.

20.
Genet Med ; 24(4): 821-830, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34961661

RESUMO

PURPOSE: The Mexican Jewish community (MJC) is a previously uncharacterized, genetically isolated group composed of Ashkenazi and Sephardi-Mizrahi Jews who migrated in the early 1900s. We aimed to determine the heterozygote frequency of disease-causing variants in 302 genes in this population. METHODS: We conducted a cross-sectional study of the MJC involving individuals representing Ashkenazi Jews, Sephardi-Mizrahi Jews, or mixed-ancestry Jews. We offered saliva-based preconception pan-ethnic expanded carrier screening, which examined 302 genes. We analyzed heterozygote frequencies of pathogenic/likely pathogenic variants and compared them with those in the Genome Aggregation Database (gnomAD). RESULTS: We recruited 208 participants. The carrier screening results showed that 72.1% were heterozygous for at least 1 severe disease-causing variant in 1 of the genes analyzed. The most common genes with severe disease-causing variants were CFTR (16.8% of participants), MEFV (11.5%), WNT10A (6.7%), and GBA (6.7%). The allele frequencies were compared with those in the gnomAD; 85% of variant frequencies were statistically different from those found in gnomAD (P <.05). Finally, 6% of couples were at risk of having a child with a severe disorder. CONCLUSION: The heterozygote frequency of at least 1 severe disease-causing variant in the MJC was 72.1%. The use of carrier screening in the MJC and other understudied populations could help parents make more informed decisions.


Assuntos
Etnicidade , Judeus , Criança , Estudos Transversais , Frequência do Gene/genética , Triagem de Portadores Genéticos/métodos , Testes Genéticos , Heterozigoto , Humanos , Judeus/genética , Pirina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...