Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 579: 112088, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832930

RESUMO

Calcitriol and transforming growth factor beta 1 (TGF-ß1) are unrelated molecules that regulate biological processes according to the genetic target, cell type, and context. Several studies have shown independent effects of calcitriol and TGF-ßs on the placenta, but there is no information regarding the impact of their combination on these cells. Therefore, this study analyzed the effects of calcitriol, TGF-ß1, and their combination in primary cultures of human trophoblast cells using a whole genome expression microarray. Data analysis revealed a set of differentially expressed genes induced by each treatment. Enrichment pathway analysis identified modulatory effects of calcitriol on genes related to metabolic processes such as vitamin D, steroid, and fat-soluble vitamins as well as antimicrobial and immune responses. In relation to TGF-ß1, the analysis showed a few differentially expressed genes that were mainly associated with the neutrophil immune response. Lastly, the analysis revealed that the combination of calcitriol and TGF-ß1 up-regulated genes involving both immunologic processes and the biosynthesis of unsaturated fatty acids, eicosanoids, and lipoxins, among others. In contrast, pathways down-regulated by the combination were mostly associated with the catabolic process of acylglycerols and peptides, PPAR signaling pathway, cellular response to low-density lipoprotein stimulus, renin angiotensin system and digestion, mobilization and transport of lipids. Consistent with these results, the combined treatment on human trophoblast cells induced the accumulation of intracellular neutral lipid droplets and stimulated both gene and protein expression of 15-hydroxyprostaglandin dehydrogenase. In conclusion, the results revealed that differentially expressed genes induced by the combination modified the transcriptional landscape compared to each treatment alone, mainly altering the storage, activity and metabolism of lipids, which might have an impact on placental development.


Assuntos
Calcitriol , Fator de Crescimento Transformador beta1 , Humanos , Feminino , Gravidez , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Placenta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Trofoblastos/metabolismo
2.
J Reprod Immunol ; 161: 104181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141515

RESUMO

Calcitriol levels increase during pregnancy, contributing to the hormonal and immunological balance, but its deficiency has been associated with problems during this period. Meanwhile, transforming growth factors-ß (TGF-ßs) play an important role in the maintenance of fetal-maternal immune tolerance; however, exacerbated concentrations of this growth factor are associated with complicated pregnancies. Therefore, we studied the effects of calcitriol on TGF-ßs and their receptors in trophoblast cells. Term placentas from uncomplicated pregnancies after cesarean sections were used for cell cultures. Basal gene expression and the effect of calcitriol upon TGF-ß1, TGF-ß2, TGF-ß3, and their receptors TGF-ßR1 and TGF-ßR2 were assessed using real-time PCR from trophoblast cells. The presence of TGF-ß1, 2, 3, and TGF-ßR1 were evaluated by immunofluorescence, and the protein abundance and secretion of TGF-ß1 were assessed by Western blot and ELISA, respectively. Basal gene expression of TGF-ß1 in trophoblast from term placentas was higher than TGF-ß2 and TGF-ß3, while TGF-ßR2 was higher than TGF-ßR1. The presence and cellular localization of TGF-ß1, 2, 3, and TGF-ßR1 were detected in the cytoplasm of syncytiotrophoblast, with TGF-ß1 showing the highest intensity. Calcitriol significantly inhibited gene expression of TGF-ß1, TGF-ß2, and TGF-ßR1. Likewise, calcitriol decreased the secretion and abundance of TGF-ß1. In conclusion, results indicate that calcitriol is a regulator of TGF-ßs in cultured trophoblast cells from term placentas and therefore may be an important player in the development of healthy pregnancies.


Assuntos
Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta2 , Humanos , Gravidez , Feminino , Calcitriol/farmacologia , Fator de Crescimento Transformador beta3 , Trofoblastos
3.
Placenta ; 87: 30-37, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542634

RESUMO

BACKGROUND: Human syncytiotrophoblast mitochondria require the activity of the isocitrate dehydrogenase type 2 (IDH2) to obtain reduced coenzymes for progesterone (P4) synthesis. Data from the literature indicate that mitochondrial steroidogenic contact sites transform efficiently cholesterol into P4. In this research, we identified the IDH2 as a member of the steroidogenic contact site and analyzed the steroidogenic role of its activity. METHOD: Human syncytiotrophoblast mitochondria were isolated by differential centrifugation, and steroidogenic contact sites were obtained by osmotic shock and sucrose gradient ultracentrifugation. In-gel native activity assay, mass spectroscopy, and western blot were used to identify the association of proteins and their activities. P4 was determined by immunofluorescence. RESULTS: The IDH2 was mainly identified in steroidogenic contact sites, and its activity was associated with a complex of proteins with an apparent molecular mass of ~590 kDa. Mass spectroscopy showed many groups of proteins with several metabolic functions, including steroidogenesis and ATP synthesis. The IDH2 activity was coupled to P4 synthesis since in the presence of Ca2+ or Na2SeO3, inhibitors of the IDH2, the P4 production decreased. CONCLUSIONS: The human syncytiotrophoblast mitochondria build contact sites for steroidogenesis. The IDH2, a non-membrane protein, supplies the NADPH required for the synthesis of P4 in a complex (steroidosome) that associate the proteins required to transform efficiently cholesterol into P4, which is necessary in pregnancy to maintain the relationship between mother and fetus. GENERAL SIGNIFICANCE: The IDH2 is proposed as a check point in the regulation of placental steroidogenesis.


Assuntos
Isocitrato Desidrogenase/metabolismo , Complexos Multiproteicos/metabolismo , Placenta/metabolismo , Progesterona/metabolismo , Esteroides/biossíntese , Adolescente , Adulto , Feminino , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Gravidez , Progesterona/análise , Ligação Proteica , Esteroides/análise , Trofoblastos/química , Trofoblastos/metabolismo , Trofoblastos/ultraestrutura , Adulto Jovem
4.
Ginecol. obstet. Méx ; 68(1): 46-49, ene. 2000. tab, CD-ROM
Artigo em Espanhol | LILACS | ID: lil-304376

RESUMO

La hepatitis viral tipo A (HVA) hc sido considerada como una enfermedad autolimitada. Sir embargo, la insuficiencia renal aguda es una rara, pero bien documentada, complicación de la HVA. Las causas de la lesión renal son inciertas, pero pueden están relacionadas al depósito de complejos inmunes. Se presenta e reporte de una paciente con HV e insuficiencia renal aguda en e posparto.


Assuntos
Humanos , Feminino , Gravidez , Adulto , Injúria Renal Aguda , Hepatite A , Período Pós-Parto , Icterícia , Complicações Infecciosas na Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...