Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 47(12): 3544-6, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21327202

RESUMO

We describe the catalytic activity of the first chimeric ligase containing a foldameric sequence of ß- and γ-amino acids. The chimeric backbone provides for the spatial arrangement of all functional groups involved in the formation of the catalytic site to allow efficient catalysis to take place. Our finding indicates significant progress in the field of functionally active artificial motifs.


Assuntos
Biocatálise , Ligases/química , Ligases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Cinética , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Temperatura
2.
Small ; 6(12): 1321-8, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20517875

RESUMO

Nanomedicine is a rapidly growing field that has the potential to deliver treatments for many illnesses. However, relatively little is known about the biological risks of nanoparticles. Some studies have shown that nanoparticles can have an impact on the aggregation properties of proteins, including fibril formation. Moreover, these studies also show that the capacity of nanoscale objects to induce or prevent misfolding of the proteins strongly depends on the primary structure of the protein. Herein, light is shed on the role of the peptide primary structure in directing nanoparticle-induced misfolding by means of two model peptides. The design of these peptides is based on the alpha-helical coiled-coil folding motif, but also includes features that enable them to respond to pH changes, thus allowing pH-dependent beta-sheet formation. Previous studies showed that the two peptides differ in the pH range required for beta-sheet folding. Time-dependent circular dichroism spectroscopy and transmission electron microscopy are used to characterize peptide folding and aggregate morphology in the presence of negatively charged gold nanoparticles (AuNPs). Both peptides are found to undergo nanoparticle-induced fibril formation. The determination of binding parameters by isothermal titration calorimetry further reveals that the different propensities of both peptides to form amyloid-like structures in the presence of AuNPs is primarily due to the binding stoichiometry to the AuNPs. Modification of one of the peptide sequences shows that AuNP-induced beta-sheet formation is related to the structural propensity of the primary structure and is not a generic feature of peptide sequences with a sufficiently high binding stoichiometry to the nanoparticles.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Peptídeos/química , Modelos Teóricos , Dobramento de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA