Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 37(Database issue): D127-35, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18988624

RESUMO

Pseudoknots have been recognized to be an important type of RNA secondary structures responsible for many biological functions. PseudoBase, a widely used database of pseudoknot secondary structures developed at Leiden University, contains over 250 records of pseudoknots obtained in the past 25 years through crystallography, NMR, mutational experiments and sequence comparisons. To promptly address the growing analysis requests of the researchers on RNA structures and bring together information from multiple sources across the Internet to a single platform, we designed and implemented PseudoBase++, an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. PseudoBase++ (http://pseudobaseplusplus.utep.edu) maps the PseudoBase dataset into a searchable relational database including additional functionalities such as pseudoknot type. PseudoBase++ links each pseudoknot in PseudoBase to the GenBank record of the corresponding nucleotide sequence and allows scientists to automatically visualize RNA secondary structures with PseudoViewer. It also includes the capabilities of fine-grained reference searching and collecting new pseudoknot information.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA/química , Pareamento de Bases , Gráficos por Computador , Integração de Sistemas
2.
Parallel Comput ; 34(11): 661-680, 2008 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-19885376

RESUMO

As ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation, their secondary structures have been the focus of many recent studies. Despite the computing power of supercomputers, computationally predicting secondary structures with thermodynamic methods is still not feasible when the RNA molecules have long nucleotide sequences and include complex motifs such as pseudoknots. This paper presents RNAVLab (RNA Virtual Laboratory), a virtual laboratory for studying RNA secondary structures including pseudoknots that allows scientists to address this challenge. Two important case studies show the versatility and functionalities of RNAVLab. The first study quantifies its capability to rebuild longer secondary structures from motifs found in systematically sampled nucleotide segments. The extensive sampling and predictions are made feasible in a short turnaround time because of the grid technology used. The second study shows how RNAVLab allows scientists to study the viral RNA genome replication mechanisms used by members of the virus family Nodaviridae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA