Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 451(4): 522-8, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25111819

RESUMO

It has been reported that GCS1 (Generative Cell Specific 1) is a transmembrane protein that is exclusively expressed in sperm cells and is essential for gamete fusion in flowering plants. The GCS1 gene is present not only in angiosperms but also in unicellular organisms and animals, implying the occurrence of a common or ancestral mechanism of GCS1-mediated gamete fusion. In order to elucidate the common mechanism, we investigated the role of GCS1 in animal fertilization using a sea anemone (Cnidaria), Nematostella vectensis. Although the existence of the GCS1 gene in N. vectensis has been reported, the expression of GCS1 in sperm and the role of GCS1 in fertilization are not known. In this study, we showed that the GCS1 gene is expressed in the testis and that GCS1 protein exists in sperm by in situ hybridization and proteomic analysis, respectively. Then we made four peptide antibodies against the N-terminal extracellular region of NvGCS1. These antibodies specifically reacted to NvGCS1 among sperm proteins on the basis of Western analysis and potently inhibited fertilization in a concentration-dependent manner. These results indicate that sperm GCS1 plays a pivotal role in fertilization, most probably in sperm-egg fusion, in a starlet sea anemone, suggesting a common gamete-fusion mechanism shared by eukaryotic organisms.


Assuntos
Fertilização/fisiologia , Hormônios de Invertebrado/fisiologia , Proteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Masculino , Plantas/genética , Anêmonas-do-Mar , Alinhamento de Sequência , Espermatozoides/metabolismo
2.
Dev Biol ; 392(1): 80-92, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24809798

RESUMO

Jellyfish eggs neither undergo apparent cortical reaction nor show any significant change in the membrane potential at fertilization, but nevertheless show monospermy. Utilizing the perfectly transparent eggs of the hydrozoan jellyfish Cytaeis uchidae, here we show that the polyspermy block is accomplished via a novel mechanism: a collaboration between Ca(2+) and mitogen-activated protein kinase (MAPK). In Cytaeis, adhesion of a sperm to the animal pole surface of an egg was immediately followed by sperm-egg fusion and initiation of an intracellular Ca(2+) rise from this site. The elevated Ca(2+) levels lasted for several minutes following the sperm-egg fusion. The Ca(2+) rise proved to be necessary and sufficient for a polyspermy block, as inhibiting a Ca(2+) rise with EGTA promoted polyspermy, and conversely, triggering a Ca(2+) rise by inositol 1,4,5-trisphosphate (IP3) or excess K(+) immediately abolished the egg's capacity for sperm-egg fusion. A Ca(2+) rise at fertilization or by artificial stimulations evoked dephosphorylation of MAPK in eggs. The eggs in which phosphorylated MAPK was maintained by injection of mRNA for MAPK kinase kinase (Mos), like intact eggs, exhibited a Ca(2+) rise at fertilization or by IP3 injection, and shut down the subsequent sperm-egg fusion. However, the Mos-expressing eggs became capable of accepting sperm following the arrest of Ca(2+) rise. In contrast, addition of inhibitors of MAPK kinase (MEK) to unfertilized eggs caused MAPK dephosphorylation without elevating Ca(2+) levels, and prevented sperm-egg fusion. Rephosphorylation of MAPK by injecting Mos mRNA after fertilization recovered sperm attraction, which is known to be another MAPK-dependent event, but did not permit subsequent sperm-egg fusion. Thus, it is possible that MAPK dephosphorylation irreversibly blocks sperm-egg fusion and reversibly suppresses sperm attraction. Collectively, our data suggest that both the fast and late mechanisms dependent on Ca(2+) and MAPK, respectively, ensure a polyspermy block in jellyfish eggs.


Assuntos
Cálcio/metabolismo , Fertilização/fisiologia , Hidrozoários/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óvulo/fisiologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Animais , Cálcio/farmacologia , Hidrozoários/metabolismo , Inositol 1,4,5-Trifosfato/farmacologia , Fosforilação , Potássio/farmacologia , Proteínas Proto-Oncogênicas c-mos/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...