Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092647

RESUMO

BACKGROUND: The synthesis of nanoparticles using the principle of green chemistry has achieved huge potential in nanomedicine. Here, we report the synthesis of silver nanoparticles (Ag- NPs) employing garlic essential oil (GEO) due to wide applications of GEO in the biomedical and pharmaceutical industry. OBJECTIVE: This study aimed to synthesise garlic essential oil-assisted silver nanoparticles and present their antimicrobial and antibiofilm activities with mechanistic assessment. METHOD: Initially, the formulation of AgNPs was confirmed using different optical techniques, such as XRD, FT-IR, DLS, zeta potential, SEM, and EDX analysis, which confirmed the formulation of well-dispersed, stable, and spherical AgNPs. The antimicrobial and antibiofilm activity of GEO-assisted AgNPs was evaluated against a spectrum of pathogenic microorganisms, such as Gram-positive (S. aureus and B. subtilis) and Gram-negative (E. coli and P. aeruginosa) bacteria. RESULTS: The AgNPs exhibited remarkable antimicrobial and anti-biofilm activity against all tested strains. The mechanism behind the antimicrobial activity of AgNPs was explored by estimating the amount of reactive oxygen species (ROS) generated due to the interaction of AgNP with bacterial cells and observing the morphological changes of bacteria upon AgNP interaction. CONCLUSION: The findings of this study concluded that ROS generation due to the interaction of AgNPs with bacterial cells put stress on bacterial membranes, altering the morphology of bacteria, exhibiting remarkable antimicrobial activity, and preventing biofilm formation.

2.
Nanoscale Adv ; 6(15): 3699-3713, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39050943

RESUMO

By virtue of their advanced physicochemical properties, nanoparticles have attracted significant attention from researchers for application in diverse fields of medical science. Breast cancer, presenting a high risk of morbidity and mortality, frequently occurs in women and is considered a malignant tumor. Globally, breast cancer is considered the second leading cause of death. Accordingly, its poor prognosis, invasive metastasis, and relapse have motivated oncologists and nano-medical researchers to develop highly potent nanotherapies to cure this deadly disease. In this case, nanoparticles have emerged as responsive platforms for breast cancer management, providing new approaches to improve the diagnostic accuracy, deliver targeted therapies, and limit the progression of this disease. Recently, smart nano-carriers encapsulating drugs, ligands, and tracking probes have been developed for the specific therapy of breast cancers. Further, efforts have been devoted to developing various nano-systems with minimal toxicity. The aim of this review is to present a background on novel nanotheranostic methods that can be employed to diagnose and treat breast cancers and encourage readers to focus on the development of novel nanomedicine for breast cancers and other deadly diseases. In this context, we discuss different methods for the diagnosis, treatment, and prevention of breast cancers using different metal and metal oxide nanoparticles.

3.
Curr Top Med Chem ; 24(15): 1327-1342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561614

RESUMO

Diabetes, as an emerging epidemic, has put forward a significant spotlight on the evolving population worldwide grounded upon the remarkable affliction of healthcare along with economical conflict. Various studies suggested that, in modern society, lack of maintenance of a healthy life style leads to the occurrence of diabetes as insulin resistant, later having a damaging effect on the pancreatic ß-cells, suggesting various complications. Furthermore, diabetes management is controversial owing to different opinions based on the prevention of complications. For this purpose, nanostructured materials (NSM) like selenium nanoparticles (SeNPs) have proved their efficiency in the therapeutic management of such serious diseases. This review offers an in- -depth idea regarding the pathophysiology, diagnosis and various conventional therapeutics of type 1 and type 2 diabetes, shedding light on Diabetic Nephropathy (DN), a case study of type 1 diabetes. Moreover, this review provides an exhaustive study by highlighting the economic and healthcare burdens associated with diabetes along with the controversies associated with conventional therapeutic management and the promising role of NSM like selenium nanoparticles (SeNPs), as a novel weapon for encountering such fatal diseases.


Assuntos
Nanopartículas , Selênio , Humanos , Selênio/química , Selênio/farmacologia , Nanopartículas/química , Complicações do Diabetes/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações
4.
Int J Biol Macromol ; 261(Pt 2): 129848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302032

RESUMO

Glycolipid-based biosurfactants (BSs), known for their intriguing and diverse properties, represent a largely uncharted territory in the realm of potential biomedical applications. This field holds great promise yet remains largely unexplored. This investigation provides new insights into the isolation, characterization, and comprehensive biomedical assessment of a novel glycolipid biosurfactant derived from Bacillus species, meeting the growing demand for understanding its multifaceted impact on various biomedical issues. Within this framework, two glycolipids, BG2A and BG2B, emerged as the most proficient strains in biosurfactant (BS) production. The biosurfactants (BSs) ascertained as glycolipids via thin layer chromatography (TLC) exhibited antimicrobial activity against S. aureus and E. coli. Both isolates exhibited anticancer effects against cervical carcinoma cells and demonstrated significant anti-biofilm activity against V. cholerae. Moreover, molecular docking and molecular dynamics (MD) simulations were employed to explore their antimicrobial resistance properties against Tyrosyl-tRNA synthetase (TyrRS) of Staphylococcus aureus, a well-annotated molecular target. Characterization and interpretation using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H and 13C NMR) confirmed that the BSs produced by each strain were glycolipids. These findings suggest that the isolated BSs can serve as effective agents with antibiofilm, antimicrobial, antioxidant, and anticancer properties, in addition to their considerable antibacterial resistance attributes.


Assuntos
Anti-Infecciosos , Bacillus , Tirosina-tRNA Ligase , Staphylococcus aureus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Glicolipídeos/farmacologia , Glicolipídeos/química , Escherichia coli , Tensoativos/química , Anti-Infecciosos/farmacologia
5.
RSC Adv ; 13(36): 25497-25507, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37636508

RESUMO

In the prevailing environmental status quo, bacterial resistance has made antibiotics and antimicrobial peptides (AMPs) ineffective, imparting a serious threat and putting a much greater financial burden on the biomedical and food industries. For this reason, the present study investigates the potential of iron oxide nanoparticles (IONPs) coated with chitosan (CS-IONP) as a platform for augmenting the antimicrobial activity of antimicrobial peptides like nisin. Hence, the nisin is allowed to be adsorbed onto chitosan-coated IONPs to formulate nisin-loaded CS-IONP nanoconjugates. The nanoconjugates were characterized by various optical techniques, such as XRD, FTIR, SEM, zeta and DLS. Remarkably, lower concentrations of N-CS-IONP nanoconjugate exhibited significant and broad-spectrum antibacterial potency compared to bare IONPs and nisin against both Gram-positive and Gram-negative bacteria. Biofilm production was also found to be drastically reduced in the presence of nanoconjugates. Further investigation established a relationship between an increase in antibacterial activity and the enhanced generation of reactive oxygen species (ROS). Oxidative stress exhibited due to enhanced ROS generation is a conclusive reason for the rupturing of bacterial membranes and leakage of cytoplasmic contents, eventually leading to the death of the bacteria. Thus, the current study emphasizes the formulation of a novel antimicrobial agent which exploits magnetic nanoparticles modulated with chitosan for enhanced remediation of resistant bacteria due to oxidative stress imparted by the nanoconjugates upon interaction with the bacteria, leading to cell death.

6.
RSC Adv ; 13(17): 11406-11414, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063733

RESUMO

The present work investigates the role of oxidative stress generated at biosynthesized selenium nanoparticles (SeNPs) interface in defining the antimicrobial and anti-biofilm activity. To this end, SeNPs with average size of 119 nm were synthesized rapidly during the growth of Staphylococcus aureus using the principle of green chemistry. The synthesis of SeNPs was confirmed by using different biophysical techniques like UV-vis spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), EDX and zeta potential analysis. The obtained data from antimicrobial study revealed strong antimicrobial activity against both Gram-positive bacteria like Bacillus subtilis (MTCC 441) and Gram-negative bacteria like Escherichia coli (MTCC 443) and anti-biofilm activity against biofilm forming bacteria. The mechanism behind antimicrobial activity of biosynthesized SeNPs was explored by evaluating the amount of reactive oxygen species (ROS) generated at SeNPs interface due to photocatalytic activity. The experimental data obtained altogether concluded that, the ROS generated at SeNPs interface put stress on bacterial cell membrane causing leakage of cytoplasmic contents, leading to bacterial cell death.

7.
Environ Toxicol ; 38(7): 1577-1588, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36988223

RESUMO

Inside the biological milieu, nanoparticles with photocatalytic activity have potential to trigger cell death non-specifically due to production of reactive oxygen species (ROS) upon reacting with biological entities. Silver nanoparticle (AgNP) possessing narrow band gap energy can exhibit high light absorption property and significant photocatalytic activity. This study intends to explore the effects of ROS generated due to photocatalytic activity of AgNP on antimicrobial and cytotoxic propensities. To this end, AgNP was synthesized using the principle of green chemistry from the peel extract of Punica granatum L., and was characterized using UV-Vis spectroscope, transmission electron microscope and x-ray diffraction, and so forth. The antimicrobial activity of AgNP against studied bacteria indicated that, ROS generated at AgNP interface develop stress on bacterial membrane leading to bacterial cell death, whereas Alamar Blue dye reduction assay indicated that increased cytotoxic activity with increasing concentrations of AgNP. The γH2AX activity assay revealed that increasing the concentrations of AgNP increased DNA damaging activity. The results altogether demonstrated that both antimicrobial and cytotoxic propensities are triggered primarily due interfacial ROS generation by photocatalytic AgNP, which caused membrane deformation in bacteria and DNA damage in HT1080 cells resulting in cell death.


Assuntos
Anti-Infecciosos , Antineoplásicos , Nanopartículas Metálicas , Espécies Reativas de Oxigênio/metabolismo , Prata/toxicidade , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Anti-Infecciosos/toxicidade , Estresse Oxidativo , Antineoplásicos/farmacologia , Antibacterianos/toxicidade
8.
Front Mater Sci ; 16(2): 220611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966717

RESUMO

Microbe-related, especially viral-related pandemics have currently paralyzed the world and such pathogenesis is expected to rise in the upcoming years. Although tremendous efforts are being made to develop antiviral drugs, very limited progress has been made in this direction. The nanotheranostic approach can be a highly potential rescue to combat this pandemic. Nanoparticles (NPs) due to their high specificity and biofunctionalization ability could be utilized efficiently for prophylaxis, diagnosis and treatment against microbial infections. In this context, titanium oxide, silver, gold NPs, etc. have already been utilized against deadly viruses like influenza, Ebola, HIV, and HBV. The discovery of sophisticated nanovaccines is under investigation and of prime importance to induce reproducible and strong immune responses against difficult pathogens. This review focuses on highlighting the role of various nano-domain materials such as metallic NPs, magnetic NPs, and quantum dots in the biomedical applications to combat the deadly microbial infections. Further, it also discusses the nanovaccines those are already available for various microbial diseases or are in clinical trials. Finally, it gives a perspective on the various nanotechnologies presently employed for efficient diagnosis and therapy against disease causing microbial infections, and how advancement in this field can benefit the health sector remarkably.

9.
Sci Rep ; 12(1): 8383, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589849

RESUMO

The green synthesis of silver nanoparticles (AgNPs) and their applications have attracted many researchers as the AgNPs are used effectively in targeting specific tissues and pathogenic microorganisms. The purpose of this study is to synthesize and characterize silver nanoparticles from fully expanded leaves of Eugenia roxburghii DC., as well as to test their effectiveness in inhibiting biofilm production. In this study, at 0.1 mM concentration of silver nitrate (AgNO3), stable AgNPs were synthesized and authenticated by monitoring the color change of the solution from yellow to brown, which was confirmed with spectrophotometric detection of optical density. The crystalline nature of these AgNPs was detected through an X-Ray Diffraction (XRD) pattern. AgNPs were characterized through a high-resolution transmission electron microscope (HR-TEM) to study the morphology and size of the nanoparticles (NPs). A new biological approach was undertaken through the Congo Red Agar (CRA) plate assay by using the synthesized AgNPs against biofilm production. The AgNPs effectively inhibit biofilm formation and the biofilm-producing bacterial colonies. This could be a significant achievement in contending with many dynamic pathogens.


Assuntos
Eugenia , Nanopartículas Metálicas , Antibacterianos/química , Bactérias , Biofilmes , Química Verde , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Difração de Raios X
10.
Biochimie ; 193: 64-77, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699915

RESUMO

Zinc oxide nanoparticle with negative surface potential (ZnONP) enhances bovine insulin fibrillation. Here, we are exploring ZnONP with positive surface potential (ZnONPUnc) and surface functionalized with tyrosine and tryptophan amino acids to observe the effects of surface potential and surface functional groups on the fibrillation. ZnONPUnc, despite of inversed surface potential, enhances the insulin fibrillation with increase in the interface concentration at physiological pH. Whereas, the interface moderation with the amino acids mitigates the surface-mediated insulin fibrillation propensity. Additionally, the study indicates that the change in interfacial functional groups at ZnONPUnc significantly reverses the interface-mediated destabilization of insulin conformation. The functional groups from the amino acids, like CO, N-H and aromatic functional groups, are anticipated to further stabilize the insulin conformation by forming hydrogen bond and van der Waals interactions with the key amyloidogenic sequences of insulin, A13-A20 from A-chain and B9-B20 from B-chain. Hence, the altered interaction profile, with change in interfacial functional groups, mitigates the interface-mediated insulin fibrillation and the ZnONPUnc-/fibril-mediated cytotoxicity.


Assuntos
Amiloide/química , Insulina/química , Nanopartículas/química , Triptofano/química , Tirosina/química , Óxido de Zinco/química , Animais , Bovinos
11.
IET Nanobiotechnol ; 13(2): 193-201, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31051451

RESUMO

Nanoparticles fabricated using medicinal plant extract have great potential in the area of nanomedicine. High surface-to-volume ratio of nanoparticle enhances the local active biomolecules concentration, leading to many fold increase in the medicinal potentials. The silver nanoparticles (AgNPs) fabricated using indigenous medicinal plants of India, Azadirachta indica and Syzygium cumini, have shown a significant effect on the viability of prokaryotic and eukaryotic cells. Biofabrication of AgNP was confirmed using different spectroscopic and microscopic techniques. Extraction and purification of AgNP from non-conjugated plant moieties are done using centrifugation and size exclusion chromatography. The cytotoxic propensity of AgNP formulations was screened against Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria, cancerous (HT1080) and non-cancerous (HEK293) cell lines. The nanoparticle formulations showed a relatively higher cytotoxic propensity against Gram-positive bacteria and cancerous cell lines. In addition, the surface roughness and reactive oxygen species (ROS) measurements indicated that AgNP formulations mediate the cell activity predominantly by ROS-mediated disruptive change in membrane morphology upon direct interaction with the membrane. Hence, the nanoparticle formulations show an enhanced selective cytotoxic propensity towards Gram-positive bacteria and cancerous cell lines.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Plantas Medicinais/química , Prata/química , Antibacterianos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Tamanho da Partícula , Extratos Vegetais/farmacologia , Prata/farmacologia
12.
RSC Adv ; 9(43): 24888-24894, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35528690

RESUMO

Metal oxide nanoparticles (NPs) have shown enhanced antibacterial effects against many bacteria. Thus, understanding the potential antibacterial effects of nickel oxide nanoparticles (NiO NPs) against Gram-positive and Gram-negative pathogenic bacteria is an urgent need to enable the exploration of NiO NP use in biomedical sciences. To this end, NiO NPs were synthesized by microwave assisted hydrothermal synthesis method. The synthesized NPs were characterized by X-ray diffraction (XRD) and Fourier Transfer Infrared (FT-IR) and UV-visible spectroscopy. The morphological features of the synthesized NiO NPs were analysed using Transmission Electron Microscopy (TEM) and FE-SEM analysis. The antibacterial activity of NiO NP was explored using different antimicrobial and biophysical studies. The obtained data reveals that the NiO NP has stronger antibacterial activity against Gram-positive bacteria compared to Gram-negative bacteria. The mechanism behind the antibacterial activity of the NiO NP was explored by evaluating the amount of ROS generation at the NiO NP interface. The effect of ROS generation on the bacterial membrane was evaluated by BacLight assay and morphological analysis of the bacterial membrane using FE-SEM. The data altogether suggested that the oxidative stress generated at the NiO NP interface resulted in membrane damage leading to bacterial cell death.

13.
IET Nanobiotechnol ; 12(5): 626-632, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30095424

RESUMO

The last decade has observed a rapid advancement in utilising biological system towards bioremediation of metal ions in the form of respective metal nanostructures or microstructures. The process may also be adopted for respective metal nanoparticle biofabrication. Among different biological methods, bacteria-mediated method is gaining great attention for nanoparticle fabrication due to their eco-friendly and cost-effective process. In the present study, silver nanoparticle (AgNP) was synthesised via continuous biofabrication using Aeromonas veronii, isolated from swamp wetland of Sunderban, West Bengal, India. The biofabricated AgNP was further purified to remove non-conjugated biomolecules using size exclusion chromatography, and the purified AgNPs were characterised using UV-visible spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy (TEM). Additionally, the presence of proteins as capping and stabilising agents was confirmed by the amide-I and amide-II peaks in the spectra obtained using attenuated total reflection Fourier transform infrared spectroscopy. The size of biofabricated AgNP was 10-20 nm, as observed using TEM. Additionally, biofabricated AgNP shows significant antibacterial potential against E. coli and S. aureus. Hence, biofabricated AgNP using Aeromonas veronii, which found resistant to a significant concentration of Ag ion, showed enhanced antimicrobial activity compared to commercially available AgNP.


Assuntos
Aeromonas veronii/metabolismo , Nanopartículas Metálicas/química , Prata/química , Áreas Alagadas , Aeromonas veronii/isolamento & purificação , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Prata/farmacologia , Microbiologia da Água
14.
Int J Biol Macromol ; 116: 955-965, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778879

RESUMO

The aim of present investigation is to explore the effect of zinc oxide nanoparticles (ZnONP, 30 nm) interface on conformational dynamics and stability of lysozyme, at pH 7.4 and pH 9.0. Lysozyme adopts partially disordered conformation at pH 9.0, which adopts fibril morphology in presence of sodium dodecyl sulfate (SDS), compared to the conformation adopted at pH 7.4. However, the presence of ZnONP interface renders partially disordered lysozyme relatively regular and non-amyloidogenic conformation, and enhances the functional efficacy of lysozyme at pH 9.0. Additionally, the thermograms reveal a non-cooperative unfolding of the pH 9.0 lysozyme conformation, which accompanied with intermediate conformations that increased with increase in the interface concentration. The binding thermodynamics indicate that at pH 9.0, lysozyme conformation preferentially binds to ZnONP interface than SDS interface. The preferential binding is attributed for the resulting anti-fibrillation propensity of ZnONP interface. The data, altogether, suggest that the presence of ZnONP interface resulted in conformational rearrangements in the partially disordered lysozyme at pH 9.0 causing accumulation of non-amyloidogenic and functionally active intermediates, thus shielding the lysozyme from SDS induced fibrillation and cytotoxicity.


Assuntos
Proteínas Aviárias , Muramidase , Nanopartículas/química , Óxido de Zinco , Animais , Proteínas Aviárias/química , Proteínas Aviárias/farmacologia , Linhagem Celular Tumoral , Galinhas , Citotoxinas/química , Citotoxinas/farmacologia , Humanos , Muramidase/química , Muramidase/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
15.
Nanoscale ; 10(7): 3369-3384, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29388654

RESUMO

The internalization of nanoparticles through the biological membrane is of immense importance for biomedical applications. A fundamental understanding of the lipid specificity and the role of the membrane biochemical and physical forces at play in modulating penetration are lacking. The current understanding of nanoparticle-membrane interaction is drawn mostly from computational studies and lacks sufficient experimental evidence. Herein, using confocal fluorescence imaging and potentiometric dye-based fluorimetry, we first investigated the interaction of ZnONP in both multi-component and individual lipid membranes using cell-like giant unilamellar vesicles to dissect the lipid specificity; also, we investigated the changes in membrane order, anisotropy and hydrophobicity. ZnONP was found to interact with phosphatidylinositol and phosphatidylcholine head-group-containing lipids specifically. We further investigated the interaction of ZnONP with three physiologically relevant membrane conditions varying in composition and dipole potential. We found that ZnONP interaction leads to a photoinduced enhancement of the partial-to-complete phase separation depending upon the membrane composition and cholesterol content. Interestingly, while the lipid order of a partially-phase-separated membrane remained unchanged upon ZnONP crowding, a fully-phase-separated membrane showed an increase in the lipid order. Strikingly, ZnONP crowding induced a contrasting effect on the fluorescence anisotropy of the membrane upon binding to the two membrane conditions, in line with the measured diffusion coefficient. ZnONP seems to preferentially penetrate through the liquid disordered areas of the membrane and the boundaries of the phase-separated regions driven by the interplay between the electrostatics and phase boundary conditions, which are collectively dictated by the composition and ZnONP-induced lipid reorganization. The results may lead to a greater understanding of the interplay of membrane parameters and ZnONP interaction in driving passive penetration.

16.
Free Radic Biol Med ; 110: 42-53, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28528796

RESUMO

The physico-chemical properties of nanoparticle (NP), such as particle size, surface defects, crystallinity and accessible surface, affect NP photocatalytic activity that in turn defines the NP cytotoxic propensity. Since zinc oxide nanoparticle (ZnONP) energy band gap falls in a range of a semiconductor, the particle possesses photocatalytic activity. Hence, the study correlates energy band gap with cytotoxic propensity of ZnONP. To this end, ZnONPs with varying energy band gap are fabricated by varying calcination temperature. Cytotoxic propensity of the fabricated ZnONPs against HT1080 cell indicates that the particle with least energy band gap shows highest cytotoxicity. The data also indicate that the cytotoxicity is triggered primarily through reactive oxygen species (ROS)-mediated pathway. Additionally, the comet assay and γH2AX activity assay reveal that decreasing energy band gap of the particle increases DNA damaging propensity. Furthermore, cell cycle analysis indicates that the cell treatment with decreasing energy band gap ZnONP results in significant increase in cell population fraction in subG1 phase. Whereas, acridine orange binding assay and increased expression level of LC3II indicate that the cell tries to recover the stress by scavenging damaged cellular biomolecules and ROS using autophagosomes. Nevertheless, cell with the non-recoverable damages led into apoptotic cell death, as confirmed by Annexin V apoptosis assay, DNA fragmentation assay and 4,6-Diamidino-2-phenylindole dihydrochloride (DAPI) staining.


Assuntos
Citotoxinas/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/agonistas , Óxido de Zinco/farmacologia , Anexina A5/genética , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Ensaio Cometa , Fragmentação do DNA/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Estresse Oxidativo , Tamanho da Partícula , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Free Radic Biol Med ; 101: 434-445, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27845185

RESUMO

Nisin is a well-recognised antimicrobial peptide (AMP) used in food industry. However, efficacy of the peptide has been compromised due to development of resistance in different bacterial strains. Here, efficacy of the peptide upon assembly at a silver nanoparticle (AgNP) interface has been characterized. To this end, experimental and simulation studies are done to characterize the interfacial assembly of nisin and underlie antibacterial mechanism. Being an AMP, efficacy of an intact nisin is explored against Gram-positive and Gram-negative bacteria, and compared with antibacterial propensity of the interfacially assembled nisin. Antibacterial propensity, upon the assembly, increases against both kinds of bacteria. Interestingly, the growth inhibition studies of the interfacially assembled nisin indicate that the originally nisin resistant Gram-negative bacteria become sensitive to the nanomolar nisin concentrations. Furthermore, reactive oxygen species (ROS) measurements together with confocal microscopy imaging indicate that the increase in interfacial and intracellular ROS production upon the treatment is underling mechanism of enhanced antibacterial propensity of the assembled nisin. Thus, the study observed that the interfacial assembly of nisin at AgNP interface enhances the efficacy of nisin against different spectrum of bacteria, where the intact nisin is largely ineffective for the studied concentrations.


Assuntos
Antibacterianos/farmacologia , Nanopartículas/química , Nisina/farmacologia , Espécies Reativas de Oxigênio/agonistas , Prata/farmacologia , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanopartículas/ultraestrutura , Nisina/química , Proteus vulgaris/efeitos dos fármacos , Proteus vulgaris/crescimento & desenvolvimento , Proteus vulgaris/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície
19.
Sci Rep ; 6: 37908, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897200

RESUMO

Nisin inhibits bacterial growth by generating pores in cell membrane and interrupting cell-wall biosynthesis through specific lipid II interaction. However, the role of the hinge region and C-terminus residues of the peptide in antibacterial action of nisin is largely unknown. Here, using molecular dynamics simulations and experimental approach, we report that at high concentration regimes of nisin, interaction with phospholipids may equally deform the bacterial cell membranes even under significantly varying amounts of lipid-II. Membrane thinning, destabilization and decrease in lipid density depend on the degree of oligomerization of nisin. Growth kinetics of Bacillus subtilis and Escherichia coli interestingly show recovery by extended lag phase under low concentrations of nisin treatment while high concentrations of nisin caused decrease in cell viability as recorded by striking reduction in membrane potential and surface area. The significant changes in the dipole potential and fluorescence anisotropy were observed in negatively charged membranes in the absence of lipid-II with increasing concentration of nisin. The identical correlation of cell viability, membrane potential dissipation and morphology with the concentration regime of nisin, in both Bacillus subtilis (lipid II rich) and Escherichia coli (lipid II impoverished), hints at a non-specific physical mechanism where degree of membrane deformation depends on degree of crowding and oligomerization of nisin.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/efeitos dos fármacos , Lipídeos/química , Nisina/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Bicamadas Lipídicas , Potenciais da Membrana/efeitos dos fármacos , Simulação de Dinâmica Molecular
20.
Sci Rep ; 5: 14813, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26437582

RESUMO

Investigating the interaction patterns at nano-bio interface is a key challenge for safe use of nanoparticles (NPs) to any biological system. The study intends to explore the role of interaction pattern at the iron oxide nanoparticle (IONP)-bacteria interface affecting antimicrobial propensity of IONP. To this end, IONP with magnetite like atomic arrangement and negative surface potential (n-IONP) was synthesized by co-precipitation method. Positively charged chitosan molecule coating was used to reverse the surface potential of n-IONP, i.e. positive surface potential IONP (p-IONP). The comparative data from fourier transform infrared spectroscope, XRD, and zeta potential analyzer indicated the successful coating of IONP surface with chitosan molecule. Additionally, the nanocrystals obtained were found to have spherical size with 10-20 nm diameter. The BacLight fluorescence assay, bacterial growth kinetic and colony forming unit studies indicated that n-IONP (<50 µM) has insignificant antimicrobial activity against Bacillus subtilis and Escherichia coli. However, coating with chitosan molecule resulted significant increase in antimicrobial propensity of IONP. Additionally, the assay to study reactive oxygen species (ROS) indicated relatively higher ROS production upon p-IONP treatment of the bacteria. The data, altogether, indicated that the chitosan coating of IONP result in interface that enhances ROS production, hence the antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Espécies Reativas de Oxigênio/agonistas , Antibacterianos/síntese química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Compostos Férricos/farmacologia , Nanopartículas de Magnetita/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA