Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139846

RESUMO

Olive ridley sea turtles, Lepidochelys olivacea, exhibit a polymorphic reproductive behavior, nesting solitarily or in mass aggregations termed "arribadas", where thousands of individuals nest synchronously. Arribada nesting provides fitness benefits including mate finding during nearshore aggregations and predator satiation at the time of hatching, but it is unknown if such benefits come with a physiological cost. We used plasma metabolite profiling, stable isotope analysis, biochemical and endocrine assays to test whether metabolic parameters differ between nesting modes, and if arribada nesting is associated with increased levels of oxidative damage compared to solitary nesting. Arribada nesters were bigger and had higher circulating thyroid hormone levels than solitary nesters. Similarly, pathways related to phospholipid and amino acid metabolism, catabolic processes, and antioxidant defense were enriched in individuals nesting in arribada. Stable isotope signatures in skin samples showed differences in feeding zones with arribada nesters likely feeding on benthic and potentially more productive grounds. Arribada nesters had increased levels of plasma lipid peroxidation and protein oxidation products compared to solitary nesters. These results suggest that metabolic profiles differ between nesting modes and that oxidative stress is a trade-off for the fitness benefits associated with arribada nesting.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33647461

RESUMO

Fasting is a component of many species' life history due to environmental factors or behavioral patterns that limit access to food. Despite metabolic and physiological challenges associated with these life history stages, fasting-adapted wild vertebrates exhibit few if any signs of oxidative stress, suggesting that fasting promotes redox homeostasis. Here we review mammalian, avian, reptilian, amphibian, and piscine examples of animals undergoing fasting during prolonged metabolic suppression (e.g. hibernation and estivation) or energetically demanding processes (e.g. migration and breeding) to better understand the mechanisms underlying fasting tolerance in wild vertebrates. These studies largely show beneficial effects of fasting on redox balance via limited oxidative damage. Though some species exhibit signs of oxidative stress due to energetically or metabolically extreme processes, fasting wild vertebrates largely buffer themselves from the negative consequences of oxidative damage through specific strategies such as elevating antioxidants, selectively maintaining redox balance in critical tissues, or modifying behavioral patterns. We conclude with suggestions for future research to better elucidate the protective effects of fasting on oxidative stress as well as disentangle the impacts from other life history stages. Further research in these areas will facilitate our understanding of the mechanisms wild vertebrates use to mitigate the negative impacts associated with metabolically-extreme life history stages as well as potential translation into therapeutic interventions in non-fasting-adapted species including humans.


Assuntos
Animais Selvagens/fisiologia , Jejum , Estresse Oxidativo , Vertebrados/fisiologia , Animais
3.
J Comp Physiol B ; 191(1): 185-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064209

RESUMO

Sea turtles dive with a full lung of air and these O2 stores are supplemented by O2 stored in blood and muscle. Olive ridley sea turtles exhibit polymorphic nesting behavior, mass nesting behavior called arribada, where thousands of turtles will nest at once, and solitary nesting behavior. The potential physiological differences between the individuals using these strategies are not well understood. We measured blood volume and associated variables, including blood hemoglobin content and hematocrit, to estimate total blood O2 stores. There were no significant differences in mean values between nesting strategies, but arribada nesting individuals were more variable than those performing solitary nesting. Mass-specific plasma volume was relatively invariant among individuals but mass specific blood volume and blood oxygen stores varied widely, twofold and threefold, respectively. Blood O2 stores represented 32% of total body O2 stores. Under typical mean diving conditions of 26 °C and high levels of activity, blood stores confer ~ 14 min to aerobic dive times and are likely critical for the long duration, deep diving exhibited by the species. Individual differences in blood O2 stores strongly impact estimated aerobic dive limits and may constrain the ability of individuals to respond to changes on ocean climate.


Assuntos
Tartarugas , Animais , Volume Sanguíneo , Hematócrito , Comportamento de Nidação , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...