Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37503172

RESUMO

Heart failure (HF) is a complex trait, influenced by environmental and genetic factors, that affects over 30 million individuals worldwide. Historically, the genetics of HF have been studied in Mendelian forms of disease, where rare genetic variants have been linked to familial cardiomyopathies. More recently, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with risk of HF. However, the relative importance of genetic variants across the allele-frequency spectrum remains incompletely characterized. Here, we report the results of common- and rare-variant association studies of all-cause heart failure, applying recently developed methods to quantify the heritability of HF attributable to different classes of genetic variation. We combine GWAS data across multiple populations including 207,346 individuals with HF and 2,151,210 without, identifying 176 risk loci at genome-wide significance (p < 5×10-8). Signals at newly identified common-variant loci include coding variants in Mendelian cardiomyopathy genes (MYBPC3, BAG3), as well as regulators of lipoprotein (LPL) and glucose metabolism (GIPR, GLP1R), and are enriched in cardiac, muscle, nerve, and vascular tissues, as well as myocyte and adipocyte cell types. Gene burden studies across three biobanks (PMBB, UKB, AOU) including 27,208 individuals with HF and 349,126 without uncover exome-wide significant (p < 3.15×10-6) associations for HF and rare predicted loss-of-function (pLoF) variants in TTN, MYBPC3, FLNC, and BAG3. Total burden heritability of rare coding variants (2.2%, 95% CI 0.99-3.5%) is highly concentrated in a small set of Mendelian cardiomyopathy genes, and is lower than heritability attributable to common variants (4.3%, 95% CI 3.9-4.7%) which is more diffusely spread throughout the genome. Finally, we demonstrate that common-variant background, in the form of a polygenic risk score (PRS), significantly modifies the risk of HF among carriers of pathogenic truncating variants in the Mendelian cardiomyopathy gene TTN. These findings suggest a significant polygenic component to HF exists that is not captured by current clinical genetic testing.

2.
Front Physiol ; 10: 1439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849697

RESUMO

Lack of interleukin 15 receptor alpha (IL15RA) increases spontaneous activity, exercise capacity and protects from diet-induced obesity by enhancing muscle energy metabolism, suggesting a role as exercise mimetic for IL15RA antagonists. Using controlled in vivo muscle stimulation mimicking moderate exercise in normal and Il15ra-/- mice, we mapped and contrasted the metabolic pathways activated upon stimulation or deletion of IL15RA. Stimulation caused the differential regulation of 123 out of the 321 detected metabolites (FDR ≤ 0.05 and fold change ≥ ±1.5). The main energy pathways activated were fatty acid oxidation, nucleotide metabolism, and anaplerotic reactions. Notably, resting Il15ra-/- muscles were primed in a semi-exercised state, characterized by higher pool sizes of fatty acids oxidized to support muscle activity. These studies identify the role of IL15RA in the system-wide metabolic response to exercise and should enable translational studies to harness the potential of IL15RA blockade as a novel exercise mimetic strategy.

3.
Nat Commun ; 10(1): 4509, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586055

RESUMO

Fibroblast to myofibroblast differentiation is crucial for the initial healing response but excessive myofibroblast activation leads to pathological fibrosis. Therefore, it is imperative to understand the mechanisms underlying myofibroblast formation. Here we report that mitochondrial calcium (mCa2+) signaling is a regulatory mechanism in myofibroblast differentiation and fibrosis. We demonstrate that fibrotic signaling alters gating of the mitochondrial calcium uniporter (mtCU) in a MICU1-dependent fashion to reduce mCa2+ uptake and induce coordinated changes in metabolism, i.e., increased glycolysis feeding anabolic pathways and glutaminolysis yielding increased α-ketoglutarate (αKG) bioavailability. mCa2+-dependent metabolic reprogramming leads to the activation of αKG-dependent histone demethylases, enhancing chromatin accessibility in loci specific to the myofibroblast gene program, resulting in differentiation. Our results uncover an important role for the mtCU beyond metabolic regulation and cell death and demonstrate that mCa2+ signaling regulates the epigenome to influence cellular differentiation.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/genética , Epigênese Genética/fisiologia , Infarto do Miocárdio/patologia , Miofibroblastos/fisiologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Metilação de DNA/fisiologia , Modelos Animais de Doenças , Embrião de Mamíferos , Epigenoma , Feminino , Fibrose , Glicólise/fisiologia , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Miocárdio/citologia , Miocárdio/patologia , Cultura Primária de Células
4.
Curr Opin Pharmacol ; 34: 15-20, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28441626

RESUMO

Intracellular metabolism in skeletal muscle has been studied for more than a century and is the stuff of textbooks. In contrast, the extracellular secretion of metabolites by muscle cells, and their effects on non-muscle cells near or far, has been investigated much less extensively. Here, we describe a number of cases in which striated muscle secretes a metabolite that elicits complex responses in other cells or tissues, with involvements in normal physiology as well as obesity, type II diabetes, and cardiac remodeling. We focus on two recently identified secreted catabolic products of branched chain amino acid breakdown, ß-aminoisobutyric acid and 3-hydroxyisobutyrate, and discuss common themes of inter-cellular signaling pathways driven by secreted metabolites.


Assuntos
Músculo Esquelético/metabolismo , Adenosina/fisiologia , Adipócitos/metabolismo , Ácidos Aminoisobutíricos/metabolismo , Animais , Cardiomegalia/metabolismo , AMP Cíclico/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Humanos , Fígado/metabolismo , Músculo Esquelético/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Vasodilatação
6.
Am J Physiol Endocrinol Metab ; 299(4): E533-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20647557

RESUMO

Muscle wasting during sepsis is at least in part regulated by glucocorticoids and is associated with increased transcription of genes encoding the ubiquitin ligases atrogin-1 and muscle-specific RING-finger protein-1 (MuRF1). Recent studies suggest that muscle atrophy caused by denervation is associated with reduced expression of the nuclear cofactor peroxisome proliferator-activated receptor-γ coactivator (PGC)-1ß and that PGC-1ß may be a repressor of the atrogin-1 and MuRF1 genes. The influence of other muscle-wasting conditions on the expression of PGC-1ß is not known. We tested the influence of sepsis and glucocorticoids on PGC-1ß and examined the potential link between downregulated PGC-1ß expression and upregulated atrogin-1 and MuRF1 expression in skeletal muscle. Sepsis in rats and mice and treatment with dexamethasone resulted in downregulated expression of PGC-1ß and increased expression of atrogin-1 and MuRF1 in the fast-twitch extensor digitorum longus muscle, with less pronounced changes in the slow-twitch soleus muscle. In additional experiments, adenoviral gene transfer of PGC-1ß into cultured C2C12 myotubes resulted in a dose-dependent decrease in atrogin-1 and MuRF1 mRNA levels. Treatment of cultured C2C12 myotubes with dexamethasone or PGC-1ß small interfering RNA (siRNA) resulted in downregulated PGC-1ß expression and increased protein degradation. Taken together, our results suggest that sepsis- and glucocorticoid-induced muscle wasting may, at least in part, be regulated by decreased expression of the nuclear cofactor PGC-1ß.


Assuntos
Glucocorticoides/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Ligação a RNA/biossíntese , Sepse/metabolismo , Transativadores/biossíntese , Fatores de Transcrição/biossíntese , Animais , Regulação para Baixo/efeitos dos fármacos , Masculino , Camundongos , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/química , Proteínas Musculares/genética , Atrofia Muscular/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/genética , Sepse/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
7.
Mol Cell Biol ; 29(22): 6018-32, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737918

RESUMO

Vascular fibrosis is a major complication of hypertension and atherosclerosis, yet it is largely untreatable. Natriuretic peptides (NPs) repress fibrogenic activation of vascular smooth muscle cells (VSMCs), but the intracellular mechanism mediating this effect remains undetermined. Here we show that inhibition of RhoA through phosphorylation at Ser188, the site targeted by the NP effector cyclic GMP (cGMP)-dependent protein kinase I (cGK I), is critical to fully exert antifibrotic potential. cGK I(+/-) mouse blood vessels exhibited an attenuated P-RhoA level and concurrently increased RhoA/ROCK signaling. Importantly, cGK I insufficiency caused dynamic recruitment of ROCK into the fibrogenic programs, thereby eliciting exaggerated vascular hypertrophy and fibrosis. Transgenic expression of cGK I-unphosphorylatable RhoA(A188) in VSMCs augmented ROCK activity, vascular hypertrophy, and fibrosis more prominently than did that of wild-type RhoA, consistent with the notion that RhoA(A188) escapes the intrinsic inhibition by cGK I. Additionally, VSMCs expressing RhoA(A188) became refractory to the antifibrotic effects of NPs. Our results identify cGK I-mediated Ser188 phosphorylation of RhoA as a converging node for pro- and antifibrotic signals and may explain how diminished cGMP signaling, commonly associated with vascular malfunction, predisposes individuals to vascular fibrosis.


Assuntos
Vasos Sanguíneos/enzimologia , Vasos Sanguíneos/patologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fosfosserina/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Angiotensina II/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/deficiência , Ativação Enzimática/efeitos dos fármacos , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertrofia , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Proteínas Mutantes/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Elemento de Resposta Sérica/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
8.
Curr Protoc Hum Genet ; Chapter 11: Unit 11.10, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18633974

RESUMO

Recent technical advances in quantitative real-time PCR (qRT-PCR) have allowed for extensive miniaturization, thereby rendering the technique amenable to high-throughput assays. Large numbers of different nucleic acids can now rapidly be measured quantitatively. Many investigations can benefit from this approach, including determination of gene expression in hundreds of samples, determination of hundreds of genes in a few samples, or even quantification of nucleic acids other than mRNA. A simple technique is described here to quantify 1880 transcripts of choice from any number of starting RNA samples.


Assuntos
Reação em Cadeia da Polimerase/métodos , RNA/análise , DNA Complementar , Corantes Fluorescentes , Amplificação de Genes , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/instrumentação , RNA/genética , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 103(44): 16260-5, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17053067

RESUMO

Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1alpha and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1alpha mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1alpha, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1alpha also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1alpha into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1alpha in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1alpha during atrophy should enhance the FoxO-dependent loss of muscle mass.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Transativadores/metabolismo , Transcrição Gênica/genética , Animais , Biomarcadores , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Atrofia Muscular/genética , Proteínas do Tecido Nervoso/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...