Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mycology ; 15(1): 91-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558843

RESUMO

Although rare, trans-kingdom infection features an interesting infection biology concept, in which highly versatile pathogenic attributes allow successful infections in evolutionarily highly divergent species. Corynespora cassiicola is a phytopathogenic fungus and occasionally causes human infections. Herein, we report a phaeohyphomycosis case caused by C. cassiicola. Given that sporadic reports may contribute to a lack of awareness of the transmission route, clinical manifestations, and diagnostic and clinical management, we systematically reviewed the cases reported thus far. Nine patients were identified and included in the pooled analysis, 88.9% (8/9) of whom were reported after 2010. All patients were from Asian, African, and Latin American countries, among whom 77.8% (7/9) were farmers or lived in areas with active agriculture. Exposed body parts were the major affected infection area, and clinical manifestations were mainly non-specific inflammatory reactions. Although biochemical and morphological examinations confirmed the presence of fungal infection, molecular analysis was used for the final diagnosis, with 77.8% (7/9) being identified by internal transcribed spacer sequencing. Whereas voriconazole, terbinafine, and AmB, either alone or in combination, resulted in successful infection resolution in most cases (5/9; 55.5%), those suffering from invasive facial infections and CARD9 deficiency showed poor outcomes. Our patient is the third case of invasive facial infection caused by C. cassiicola and was successfully treated with intravenous LAmB followed by oral voriconazole combined with topical antifungal irrigation. Molecular identification of fungus and prompt antifungal treatment is pivotal in the clinical success of patients suspected to have phaeohyphomycosis. Moreover, as evidenced by our data, itraconazole treatment is not recommended.

2.
Clin Microbiol Rev ; : e0007423, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602408

RESUMO

SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.

3.
mBio ; 15(4): e0007224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501869

RESUMO

Recent epidemiological studies documented an alarming increase in the prevalence of echinocandin-resistant (ECR) Candida glabrata blood isolates. ECR isolates are known to arise from a minor subpopulation of a clonal population, termed echinocandin persisters. Although it is believed that isolates with a higher echinocandin persistence (ECP) are more likely to develop ECR, the implication of ECP needs to be better understood. Moreover, replacing laborious and time-consuming traditional approaches to determine ECP levels with rapid, convenient, and reliable tools is imperative to advance our understanding of this emerging concept in clinical practice. Herein, using extensive ex vivo and in vivo systemic infection models, we showed that high ECP isolates are less effectively cleared by micafungin treatment and exclusively give rise to ECR colonies. Additionally, we developed a flow cytometry-based tool that takes advantage of a SYTOX-based assay for the stratification of ECP levels. Once challenged with various collections of echinocandin-susceptible blood isolates, our assay reliably differentiated ECP levels in vitro and predicted ECP levels in real time under ex vivo and in vivo conditions when compared to traditional methods relying on colony-forming unit counting. Given the high and low ECP predictive values of 92.3% and 82.3%, respectively, our assay showed a high agreement with traditional approach. Collectively, our study supports the concept of ECP level determination in clinical settings and provides a robust tool scalable for high-throughput settings. Application of this tool facilitates the interrogation of mutant and drug libraries to further our understanding of persister biology and designing anti-persister therapeutics. IMPORTANCE: Candida glabrata is a prevalent fungal pathogen able to replicate inside macrophages and rapidly develop resistance against frontline antifungal echinocandins. Multiple studies have shown that echinocandin resistance is fueled by the survival of a small subpopulation of susceptible cells surviving lethal concentrations of echinocandins. Importantly, bacterial pathogens that exhibit high antibiotic persistence also impose a high burden and generate more antibiotic-resistant colonies. Nonetheless, the implications of echinocandin persistence (ECP) among the clinical isolates of C. glabrata have not been defined. Additionally, ECP level determination relies on a laborious and time-consuming method, which is prone to high variation. By exploiting in vivo systemic infection and ex vivo models, we showed that C. glabrata isolates with a higher ECP are associated with a higher burden and more likely develop echinocandin resistance upon micafungin treatment. Additionally, we developed an assay that reliably determines ECP levels in real time. Therefore, our study identified C. glabrata isolates displaying high ECP levels as important entities and provided a reliable and convenient tool for measuring echinocandin persistence, which is extendable to other fungal and bacterial pathogens.


Assuntos
Candida glabrata , Equinocandinas , Equinocandinas/farmacologia , Candida glabrata/genética , Micafungina/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antibacterianos/farmacologia
4.
Emerg Microbes Infect ; 13(1): 2322655, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38380673

RESUMO

Candida parapsilosis is known to cause severe and persistent outbreaks in clinical settings. Patients infected with multidrug-resistant C. parapsilosis (MDR Cp) isolates were identified in a large Turkish hospital from 2017-2020. We subsequently identified three additional patients infected with MDR Cp isolates in 2022 from the same hospital and two echinocandin-resistant (ECR) isolates from a single patient in another hospital. The increasing number of MDR and ECR isolates contradicts the general principle that the severe fitness cost associated with these phenotypes could prevent their dominance in clinical settings. Here, we employed a multidimensional approach to systematically assess the fitness costs of MDR and ECR C. parapsilosis isolates. Whole-genome sequencing revealed a novel MDR genotype infecting two patients in 2022. Despite severe in vitro defects, the levels and tolerances of the biofilms of our ECR and MDR isolates were generally comparable to those of susceptible wild-type isolates. Surprisingly, the MDR and ECR isolates showed major alterations in their cell wall components, and some of the MDR isolates consistently displayed increased tolerance to the fungicidal activities of primary human neutrophils and were more immunoevasive during exposure to primary human macrophages. Our systemic infection mouse model showed that MDR and ECR C. parapsilosis isolates had comparable fungal burden in most organs relative to susceptible isolates. Overall, we observed a notable increase in the genotypic diversity and frequency of MDR isolates and identified MDR and ECR isolates potentially capable of causing persistent outbreaks in the future.


Assuntos
Antifúngicos , Candida parapsilosis , Animais , Camundongos , Humanos , Candida parapsilosis/genética , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Surtos de Doenças , Testes de Sensibilidade Microbiana
5.
mBio ; 14(5): e0118023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772846

RESUMO

IMPORTANCE: Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite." This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omics technologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and, therefore, are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, which can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.


Assuntos
Candida glabrata , Equinocandinas , Animais , Camundongos , Equinocandinas/farmacologia , Candida glabrata/genética , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica/genética
6.
bioRxiv ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398397

RESUMO

Small colony variants (SCVs) are relatively common among some bacterial species and are associated with poor prognosis and recalcitrant infections. Similarly, Candida glabrata - a major intracellular fungal pathogen - produces small and slow-growing respiratory-deficient colonies, termed "petite." Despite reports of clinical petite C . glabrata strains, our understanding of petite behavior in the host remains obscure. Moreover, controversies exist regarding in-host petite fitness and its clinical relevance. Herein, we employed whole-genome sequencing (WGS), dual-RNAseq, and extensive ex vivo and in vivo studies to fill this knowledge gap. WGS identified multiple petite-specific mutations in nuclear and mitochondrially-encoded genes. Consistent with dual-RNAseq data, petite C . glabrata cells did not replicate inside host macrophages and were outcompeted by their non-petite parents in macrophages and in gut colonization and systemic infection mouse models. The intracellular petites showed hallmarks of drug tolerance and were relatively insensitive to the fungicidal activity of echinocandin drugs. Petite-infected macrophages exhibited a pro-inflammatory and type I IFN-skewed transcriptional program. Interrogation of international C . glabrata blood isolates ( n =1000) showed that petite prevalence varies by country, albeit at an overall low prevalence (0-3.5%). Collectively, our study sheds new light on the genetic basis, drug susceptibility, clinical prevalence, and host-pathogen responses of a clinically overlooked phenotype in a major fungal pathogen. Importance: Candida glabrata is a major fungal pathogen, which is able to lose mitochondria and form small and slow-growing colonies, called "petite". This attenuated growth rate has created controversies and questioned the clinical importance of petiteness. Herein, we have employed multiple omicstechnologies and in vivo mouse models to critically assess the clinical importance of petite phenotype. Our WGS identifies multiple genes potentially underpinning petite phenotype. Interestingly, petite C. glabrata cells engulfed by macrophages are dormant and therefore are not killed by the frontline antifungal drugs. Interestingly, macrophages infected with petite cells mount distinct transcriptomic responses. Consistent with our ex-vivo observations, mitochondrial-proficient parental strains outcompete petites during systemic and gut colonization. Retrospective examination of C. glabrata isolates identified petite prevalence a rare entity, can significantly vary from country to country. Collectively, our study overcomes the existing controversies and provides novel insights regarding the clinical relevance of petite C. glabrata isolates.

7.
J Antimicrob Chemother ; 78(6): 1488-1494, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100456

RESUMO

OBJECTIVES: Although perceived as a rare clinical entity, recent studies have noted the emergence of MDR C. parapsilosis (MDR-Cp) isolates from single patients (resistant to both azole and echinocandins). We previously reported a case series of MDR-Cp isolates carrying a novel FKS1R658G mutation. Herein, we identified an echinocandin-naive patient infected with MDR-Cp a few months after the previously described isolates. WGS and CRISPR-Cas9 editing were used to explore the origin of the new MDR-Cp isolates, and to determine if the novel mutation confers echinocandin resistance. METHODS: WGS was applied to assess the clonality of these isolates and CRISPR-Cas9 editing and a Galleria mellonella model were used to examine whether FKS1R658G confers echinocandin resistance. RESULTS: Fluconazole treatment failed, and the patient was successfully treated with liposomal amphotericin B (LAMB). WGS proved that all historical and novel MDR-Cp strains were clonal and distant from the fluconazole-resistant outbreak cluster in the same hospital. CRISPR-Cas9 editing and G. mellonella virulence assays confirmed that FKS1R658G confers echinocandin resistance in vitro and in vivo. Interestingly, the FKS1R658G mutant showed a very modest fitness cost compared with the parental WT strain, consistent with the persistence of the MDR-Cp cluster in our hospital. CONCLUSIONS: Our study showcases the emergence of MDR-Cp isolates as a novel threat in clinical settings, which undermines the efficacy of the two most widely used antifungal drugs against candidiasis, leaving only LAMB as a last resort. Additionally, surveillance studies and WGS are warranted to effectively establish infection control and antifungal stewardship strategies.


Assuntos
Antifúngicos , Candidemia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida parapsilosis/genética , Fluconazol/farmacologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Testes de Sensibilidade Microbiana
8.
Lancet Microbe ; 4(6): e470-e480, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121240

RESUMO

Candida parapsilosis is one of the most commen causes of life-threatening candidaemia, particularly in premature neonates, individuals with cancer of the haematopoietic system, and recipients of organ transplants. Historically, drug-susceptible strains have been linked to clonal outbreaks. However, worldwide studies started since 2018 have reported severe outbreaks among adults caused by fluconazole-resistant strains. Outbreaks caused by fluconazole-resistant strains are associated with high mortality rates and can persist despite strict infection control strategies. The emergence of resistance threatens the efficacy of azoles, which is the most widely used class of antifungals and the only available oral treatment option for candidaemia. The fact that most patients infected with fluconazole-resistant strains are azole-naive underscores the high potential adaptability of fluconazole-resistant strains to diverse hosts, environmental niches, and reservoirs. Another concern is the multidrug-resistant and echinocandin-tolerant C parapsilosis isolates, which emerged in 2020. Raising awareness, establishing effective clinical interventions, and understanding the biology and pathogenesis of fluconazole-resistant C parapsilosis are urgently needed to improve treatment strategies and outcomes.


Assuntos
Candidemia , Fluconazol , Adulto , Recém-Nascido , Humanos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida parapsilosis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Azóis/farmacologia , Azóis/uso terapêutico
9.
Int J Antimicrob Agents ; 62(1): 106831, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121442

RESUMO

Candida parapsilosis is a significant cause of candidemia worldwide. Echinocandin-resistant (ECR) and echinocandin-tolerant (ECT) C. parapsilosis isolates have been reported in various countries but are rare. Resistance and tolerance are predominantly caused by mutations related to the hotspot (HS) regions of the FKS1 gene. A relatively high proportion of clinical C. parapsilosis isolates carrying mutations outside the HS regions has been noted in some studies, but an association with echinocandin (EC) resistance or tolerance was not explored. Herein, CRISPR-Cas9 was used and the association between amino acid substitution in FKS1 outside HS 1/2 (V595I, S745L, M1328I, F1386S, and A1422G) with EC susceptibility profile was delineated. None of the mutations conferred EC resistance, but they resulted in a significantly higher level of EC tolerance than the parental isolate, ATCC 22019. When incubated on agar plates containing ECs, specifically caspofungin and micafungin, ECR colonies were exclusively observed among ECT isolates, particularly mutants carrying V595I, S745L, and F1386S. Additionally, mutants had significantly better growth rates in yeast extract peptone dextrose (YPD) and YPD containing agents inducing membrane and oxidative stresses. The mutants had a trivial fitness cost in the Galleria mellonella model relative to ATCC 22019. Collectively, this study supports epidemiological studies to catalog mutations occurring outside the HS regions of FKS1, even if they do not confer EC resistance. These mutations are important as they potentially confer a higher level of EC tolerance and a higher propensity to develop EC resistance, therefore unveiling a novel mechanism of EC tolerance in C. parapsilosis. The identification of EC tolerance in C. parapsilosis may have direct clinical benefit in patient management.


Assuntos
Antifúngicos , Candida parapsilosis , Humanos , Antifúngicos/farmacologia , Candida parapsilosis/genética , Candida/genética , Candida/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Equinocandinas/farmacologia , Mutação
10.
Nat Commun ; 14(1): 1183, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864040

RESUMO

Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.


Assuntos
Antifúngicos , Equinocandinas , Tolerância a Medicamentos , Antifúngicos/farmacologia , Candida glabrata/genética , Macrófagos , Resistência a Medicamentos
11.
Emerg Microbes Infect ; 11(1): 2264-2274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36066554

RESUMO

Patients presenting with severe COVID-19 are predisposed to acquire secondary fungal infections such as COVID-19-associated candidemia (CAC), which are associated with poor clinical outcomes despite antifungal treatment. The extreme burden imposed on clinical facilities during the COVID-19 pandemic has provided a permissive environment for the emergence of clonal outbreaks of multiple Candida species, including C. auris and C. parapsilosis. Here we report the largest clonal CAC outbreak to date caused by fluconazole resistant (FLZR) and echinocandin tolerant (ECT) C. parapsilosis. Sixty C. parapsilosis strains were obtained from 57 patients at a tertiary care hospital in Brazil, 90% of them were FLZR and ECT. Although only 35.8% of FLZR isolates contained an ERG11 mutation, all of them contained the TAC1L518F mutation and significantly overexpressed CDR1. Introduction of TAC1L518F into a susceptible background increased the MIC of fluconazole and voriconazole 8-fold and resulted in significant basal overexpression of CDR1. Additionally, FLZR isolates exclusively harboured E1939G outside of Fks1 hotspot-2, which did not confer echinocandin resistance, but significantly increased ECT. Multilocus microsatellite typing showed that 51/60 (85%) of the FLZR isolates belonged to the same cluster, while the susceptible isolates each represented a distinct lineage. Finally, biofilm production in FLZR isolates was significantly lower than in susceptible counterparts Suggesting that it may not be an outbreak determinant. In summary, we show that TAC1L518F and FKS1E1393G confer FLZR and ECT, respectively, in CAC-associated C. parapsilosis. Our study underscores the importance of antifungal stewardship and effective infection control strategies to mitigate clonal C. parapsilosis outbreaks.


Assuntos
COVID-19 , Candidemia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Brasil/epidemiologia , COVID-19/epidemiologia , Candida parapsilosis/genética , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Candidemia/microbiologia , Surtos de Doenças , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Pandemias , Voriconazol/uso terapêutico
12.
Mycoses ; 65(10): 960-968, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35979737

RESUMO

BACKGROUND: Galactomannan Enzyme Immunoassay (GM-EIA) is proved to be a cornerstone in the diagnosis of COVID-19-associated pulmonary aspergillosis (CAPA), its use is limited in middle and low-income countries, where the application of simple and rapid test, including Galactomannan Lateral Flow Assay (GM-LFA), is highly appreciated. Despite such merits, limited studies directly compared GM-LFA with GM-EIA. Herein we compared the diagnostic features of GM-LFA, GM-EIA and bronchoalveolar lavage (BAL) culture for CAPA diagnosis in Iran, a developing country. MATERIALS/METHODS: Diagnostic performances of GM-LFA and GM-EIA in BAL (GM indexes ≥1) and serum (GM indexes >0.5), i.e. sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and areas under the curve (AUC), were evaluated using BAL (n = 105) and serum (n = 101) samples from mechanically ventilated COVID-19 patients in intensive care units. Patients were classified based on the presence of host factors, radiological findings and mycological evidences according to 2020 ECMM/ISHAM consensus criteria for CAPA diagnosis. RESULTS: The Aspergillus GM-LFA for serum and BAL samples showed a sensitivity of 56.3% and 60.6%, specificity of 94.2% and 88.9%, PPV of 81.8% and 71.4%, NPV of 82.3% and 83.1%, when compared with BAL culture, respectively. GM-EIA showed sensitivities of 46.9% and 54.5%, specificities of 100% and 91.7%, PPVs of 100% and 75%, NPVs of 80.2% and 81.5% for serum and BAL samples, respectively. CONCLUSION: Our study found GM-LFA as a reliable simple and rapid diagnostic tool, which could circumvent the shortcomings of culture and GM-EIA and be pivotal in timely initiation of antifungal treatment.


Assuntos
COVID-19 , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Antifúngicos , Líquido da Lavagem Broncoalveolar/microbiologia , COVID-19/diagnóstico , Teste para COVID-19 , Galactose/análogos & derivados , Humanos , Técnicas Imunoenzimáticas , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/microbiologia , Mananas , Sensibilidade e Especificidade
13.
Expert Opin Investig Drugs ; 31(8): 795-812, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657026

RESUMO

INTRODUCTION: The epidemiology of invasive Candida infections is evolving. Infections caused by non-albicans Candida spp. are increasing; however, the antifungal pipeline is more promising than ever and is enriched with repurposed drugs and agents that have new mechanisms of action. Despite progress, unmet needs in the treatment of invasive candidiasis remain, and there are still too few antifungals that can be administered orally or that have CNS penetration. AREAS COVERED: The authors shed light on those antifungal agents active against Candida that are in early- and late-stage clinical development. Mechanisms of action and key pharmacokinetic and pharmacodynamic properties are discussed. Insights are offered on the potential future roles of the investigational agents MAT-2203, oteseconazole, ATI-2307, VL-2397, NP-339, and the repurposed drug miltefosine. EXPERT OPINION: Ibrexafungerp and fosmanogepix have novel mechanisms of action and will provide effective options for the treatment of Candida infections (including those caused by multiresistant Candida spp). Rezafungin, an echinocandin with an extended half-life allowing for once weekly administration, will be particularly valuable for outpatient treatment and prophylaxis. Despite this, there is an urgent need to garner clinical data on investigational drugs, especially in the current rise of azole-resistant and multidrug-resistant Candida spp.


Assuntos
Candidíase Invasiva , Drogas em Investigação , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candidíase , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/microbiologia , Farmacorresistência Fúngica , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana
14.
Open Forum Infect Dis ; 9(4): ofac078, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35345665

RESUMO

Background: We evaluated the epidemiology of candidemia among coronavirus disease 2019 (COVID-19) patients admitted to intensive care units (ICUs). Methods: We conducted a retrospective multicenter study in Turkey between April and December 2020. Results: Twenty-eight of 148 enrolled patients developed candidemia, yielding an incidence of 19% and incidence rate of 14/1000 patient-days. The probability of acquiring candidemia at 10, 20, and 30 days of ICU admission was 6%, 26%, and 50%, respectively. More than 80% of patients received antibiotics, corticosteroid, and mechanical ventilation. Receipt of a carbapenem (odds ratio [OR] = 6.0, 95% confidence interval [CI] = 1.6-22.3, P = .008), central venous catheter (OR = 4.3, 95% CI = 1.3-14.2, P = .02), and bacteremia preceding candidemia (OR = 6.6, 95% CI = 2.1-20.1, P = .001) were independent risk factors for candidemia. The mortality rate did not differ between patients with and without candidemia. Age (OR = 1.05, 95% CI = 1.01-1.09, P = .02) and mechanical ventilation (OR = 61, 95% CI = 15.8-234.9, P < .0001) were independent risk factors for death. Candida albicans was the most prevalent species overall. In Izmir, Candida parapsilosis accounted for 50% (2 of 4) of candidemia. Both C parapsilosis isolates were fluconazole nonsusceptible, harbored Erg11-Y132F mutation, and were clonal based on whole-genome sequencing. The 2 infected patients resided in ICUs with ongoing outbreaks due to fluconazole-resistant C parapsilosis. Conclusions: Physicians should be aware of the elevated risk for candidemia among patients with COVID-19 who require ICU care. Prolonged ICU exposure and ICU practices rendered to COVID-19 patients are important contributing factors to candidemia. Emphasis should be placed on (1) heightened infection control in the ICU and (2) developing antibiotic stewardship strategies to reduce irrational antimicrobial therapy.

15.
Mycopathologia ; 187(2-3): 169-180, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35157189

RESUMO

Knowledge about the clinical characteristics and prognostic factors of Talaromyces marneffei infection in children is limited, especially in HIV-positive children. We performed a retrospective study of all HIV-positive pediatric inpatients with T. marneffei infection in a tertiary hospital in Southern China between 2014 and 2019 and analyzed the related risk factors of poor prognosis using logistic regression. Overall, 28 cases were enrolled and the prevalence of talaromycosis in AIDS children was 15.3% (28/183). The median age of the onset was 8 years (range: 1-14 years). The typical manifestation of skin lesion with central umbilication was not common (21.4%). All the children had very low CD4+ cell counts (median 13.5 cells/µL, range: 3-137 cells/µL) on admission. 92.9% children were misdiagnosed and talaromycosis was only noted after positivity for HIV infection. 89.3% diagnoses of T. marneffei infections were based on positive blood cultures, with a long culture time (median 7 days, range from 3-14 days). The sensitivity of fungus 1,3-ß-D-glucan assay was 63.2%. Amphotericin B was superior to itraconazole in the induction antifungal therapy of talaromycosis in HIV-positive children. A six-month follow-up revealed a 28.6% mortality. Lower ratio of CD4+/CD8+ and amphotericin B treatment not over 7 days predicted poor prognosis. Our retrospective study provided an overview and update on the current knowledge of talaromycosis in HIV-positive children. Pediatricians in endemic areas should be aware of mycoses to prevent misdiagnosis. 1,3-ß-D-glucan assay did not show optimal sensitivity. Amphotericin B treatment over 7 days can improve poor prognosis.


Assuntos
Infecções por HIV , Micoses , Talaromyces , Adolescente , Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Criança , Pré-Escolar , China/epidemiologia , Glucanos/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Lactente , Micoses/diagnóstico , Micoses/tratamento farmacológico , Micoses/epidemiologia , Prognóstico , Estudos Retrospectivos
16.
J Fungi (Basel) ; 8(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205937

RESUMO

Candida parapsilosis is the second most common cause of candidemia in some geographical areas and in children in particular. Yet, the proportion among children varies, for example, from 10.4% in Denmark to 24.7% in Tehran, Iran. As this species is also known to cause hospital outbreaks, we explored if the relatively high number of C. parapsilosis pediatric cases in Tehran could in part be explained by undiscovered clonal outbreaks. Among 56 C. parapsilosis complex isolates, 50 C. parapsilosis were genotyped by Amplified Fragment Length Polymorphism (AFLP) fingerprinting and microsatellite typing and analyzed for nucleotide polymorphisms by FKS1 and ERG11 sequencing. AFLP fingerprinting grouped Iranian isolates in two main clusters. Microsatellite typing separated the isolates into five clonal lineages, of which four were shared with Danish isolates, and with no correlation to the AFLP patterns. ERG11 and FKS1 sequencing revealed few polymorphisms in ERG11 leading to amino-acid substitutions (D133Y, Q250K, I302T, and R398I), with no influence on azole-susceptibilities. Collectively, this study demonstrated that there were no clonal outbreaks at the Iranian pediatric ward. Although possible transmission of a diverse C. parapsilosis community within the hospital cannot be ruled out, the study also emphasizes the necessity of applying appropriately discriminatory methods for outbreak investigation.

17.
Lancet Microbe ; 3(7): e543-e552, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35098179

RESUMO

Reports of COVID-19-associated mucormycosis have been increasing in frequency since early 2021, particularly among patients with uncontrolled diabetes. Patients with diabetes and hyperglycaemia often have an inflammatory state that could be potentiated by the activation of antiviral immunity to SARS-CoV2, which might favour secondary infections. In this Review, we analysed 80 published and unpublished cases of COVID-19-associated mucormycosis. Uncontrolled diabetes, as well as systemic corticosteroid treatment, were present in most patients with COVID-19-associated mucormycosis, and rhino-orbital cerebral mucormycosis was the most frequent disease. Mortality was high at 49%, which was particularly due to patients with pulmonary or disseminated mucormycosis or cerebral involvement. Furthermore, a substantial proportion of patients who survived had life-changing morbidities (eg, loss of vision in 46% of survivors). Our Review indicates that COVID-19-associated mucormycosis is associated with high morbidity and mortality. Diagnosis of pulmonary mucormycosis is particularly challenging, and might be frequently missed in India.


Assuntos
COVID-19 , Diabetes Mellitus , Mucormicose , COVID-19/complicações , Diabetes Mellitus/epidemiologia , Humanos , Mucormicose/complicações , RNA Viral , Fatores de Risco , SARS-CoV-2
18.
Front Fungal Biol ; 3: 906681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746198

RESUMO

Fluconazole-resistant Candida parapsilosis (FLZR-CP) outbreaks are a growing public health concern and have been reported in numerous countries. Patients infected with FLZR-CP isolates show fluconazole therapeutic failure and have a significantly increased mortality rate. Because fluconazole is the most widely used antifungal agent in most regions with outbreaks, it is paramount to restore its antifungal activity. Milbemycin oxim (MOX), a well-known canine endectocide, is a potent efflux pump inhibitor that significantly potentiates the activity of fluconazole against FLZR C. glabrata and C. albicans. However, the FLZ-MOX combination has not been tested against FLZR-CP isolates, nor is it known whether MOX may also potentiate the activity of echinocandins, a different class of antifungal drugs. Furthermore, the extent of involvement of efflux pumps CDR1 and MDR1 and ergosterol biosynthesis enzyme ERG11 and their link with gain-of-function (GOF) mutations in their transcription regulators (TAC1, MRR1, and UPC2) are poorly characterized among FLZR-CP isolates. We analyzed 25 C. parapsilosis isolates collected from outbreaks in Turkey and Brazil by determining the expression levels of CDR1, MDR1, and ERG11, examining the presence of potential GOF mutations in their transcriptional regulators, and assessing the antifungal activity of FLZ-MOX and micafungin-MOX against FLZR and multidrug-resistant (MDR) C. parapsilosis isolates. ERG11 was found to be universally induced by fluconazole in all isolates, while expression of MDR1 was unchanged. Whereas mutations in MRR1 and UPC2 were not detected, CDR1 was overexpressed in three Brazilian FLZR-CP isolates, which also carried a novel TAC1L518F mutation. Of these three isolates, one showed increased basal expression of CDR1, while the other two overexpressed CDR1 only in the presence of fluconazole. Interestingly, MOX showed promising antifungal activity against FLZR isolates, reducing the FLZ MIC 8- to 32-fold. However, the MOX and micafungin combination did not exert activity against an MDR C. parapsilosis isolate. Collectively, our study documents that the mechanisms underpinning FLZR are region specific, where ERG11 mutations were the sole mechanism of FLZR in Turkish FLZR-CP isolates, while simultaneous overexpression of CDR1 was observed in some Brazilian counterparts. Moreover, MOX and fluconazole showed potent synergistic activity, while the MOX-micafungin combination showed no synergy.

19.
Front Microbiol ; 12: 744502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690991

RESUMO

Wickerhamomyces anomalus is an emerging pathogen, which has been associated with clonal outbreaks and poor clinical outcomes. Despite being an important emerging yeasts species, our understanding concerning the microbiological and clinical characteristics of infections due to this species is limited. Herein, we are reporting a retrospective analysis of fungemia patients with W. anomalus from a 2,100-bed hospital in Shanghai during 2014-2016. Moreover, we conducted an extensive literature review to gain a deeper clinical and microbiological insights. Detailed clinical data were recorded. Antifungal susceptibility testing (AFST) followed CLSI M27-A3, and isolates were identified using MALDI-TOF MS. In total, 13 patients were identified with a mortality rate of 38.5% (5/13). Central venous catheter (CVC), broad-spectrum antibiotic therapy, total parenteral nutrition (TPN), surgery, and mechanical ventilation were the most frequently observed risk factors. Eight patients (61.5%) experienced mixed bacterial/Candida bloodstream infections, and four patients developed mixed candidemia (MC). W. anomalus isolates showed high minimum inhibitory concentrations (MICs) against all azoles tested and flucytosine, while AMB showed the highest in vitro activity. Azoles were used for 84.6% (11/13) of the cases, while 36.4% (4/11) of them died. When combining with the AFST data and the literature review, our study highlights the poor efficacy of azoles and optimal efficacy of AMB and LAMB against infections caused by W. anomalus. In conclusion, our study highlights the emerging threat of W. anomalus affecting both neonates and adults. Furthermore, our results advocate the use of AMB formulations rather than azoles among patients infected with W. anomalus. Future studies are warranted to reach a definitive consensus regarding the utility of echinocandins among such patients.

20.
Drugs ; 81(15): 1703-1729, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34626339

RESUMO

The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Infecções Fúngicas Invasivas/tratamento farmacológico , Animais , Antifúngicos/efeitos adversos , Antifúngicos/classificação , Desenvolvimento de Medicamentos , Interações Medicamentosas , Farmacorresistência Fúngica , Humanos , Infecções Fúngicas Invasivas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...