Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(19): 5615-5622, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29664647

RESUMO

Artificial bilayer lipid membranes (BLMs) provide well-defined systems for investigating the fundamental properties of membrane proteins, including ion channels, and for screening the effect of drugs that act on them. However, the application of this technique is limited due to the low stability and low reconstitution efficiency of the process. We previously reported on improving the stability of BLM based on the fabrication of microapertures having a tapered edge in SiO2/Si3N4 septa and efficient ion channel incorporation based on vesicle fusion accelerated by a centrifugal force. Although the BLM stability and incorporation probability were dramatically improved when these approaches were used, some BLMs were ruptured when subjected to a centrifugal force. To further improve the BLM stability, we investigated the effect of modifying the surface of the SiO2/Si3N4 septa on the stability of BLM suspended in the septa. The modified surfaces were characterized in terms of hydrophobicity, lipophobicity, and surface roughness. Diffusion coefficients of the lipid monolayers formed on the modified surfaces were also determined. Highly fluidic lipid monolayers were formed on the amphiphobic substrates that had been modified with long-chain perfluorocarbons. Free-standing BLMs formed in amphiphobic septa showed a much higher mechanical stability, including tolerance to water movement and applied centrifugal forces with and without proteoliposomes, than those formed in the septa that had been modified with a short alkyl chain. These results demonstrate that highly stable BLMs are formed when the surface of the septa has amphiphobic properties. Because highly fluidic lipid monolayers that are formed on the septa seamlessly connect with BLMs in a free-standing region, the high fluidity of the lipids contributes to decreasing potential damage to BLMs when mechanical stresses are applied. This approach to improve the BLM stability increases the experimental efficiency of the BLM systems and will contribute to the development of high-throughput platforms for functional assays of ion channel proteins.


Assuntos
Bicamadas Lipídicas/química , Canais Iônicos/química , Fusão de Membrana , Dióxido de Silício/química , Estresse Mecânico
2.
Sci Rep ; 7(1): 17736, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255199

RESUMO

The self-assembled bilayer lipid membrane (BLM) is the basic component of the cell membrane. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for the functional analysis of ion channels and screening the effects of drugs that act on them. However, because BLMs are unstable, this limits the experimental throughput of BLM reconstitution systems. Here we report on the formation of mechanically stable solvent-free BLMs in microfabricated apertures with defined nano- and micro-tapered edge structures. The role of such nano- and micro-tapered structures on the stability of the BLMs was also investigated. Finally, this BLM system was combined with a cell-free synthesized human ether-a-go-go-related gene channel, a cardiac potassium channel whose relation to arrhythmic side effects following drug treatment is well recognized. Such stable BLMs as these, when combined with a cell-free system, represent a potential platform for screening the effects of drugs that act on various ion-channel genotypes.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Bicamadas Lipídicas/metabolismo , Sistemas Microeletromecânicos/métodos , Membrana Celular/metabolismo , Canais de Potássio Éter-A-Go-Go/fisiologia , Humanos , Canais Iônicos/metabolismo , Bicamadas Lipídicas/síntese química , Microtecnologia/métodos , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Compostos de Silício , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA