Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
BMC Genomics ; 17(Suppl 8): 726, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27801294

RESUMO

BACKGROUND: Magnetotactic bacteria (MTB) are a unique group of prokaryotes that have a potentially high impact on global geochemical cycling of significant primary elements because of their metabolic plasticity and the ability to biomineralize iron-rich magnetic particles called magnetosomes. Understanding the genetic composition of the few cultivated MTB along with the unique morphological features of this group of bacteria may provide an important framework for discerning their potential biogeochemical roles in natural environments. RESULTS: Genomic and ultrastructural analyses were combined to characterize the cultivated magnetotactic coccus Magnetofaba australis strain IT-1. Cells of this species synthesize a single chain of elongated, cuboctahedral magnetite (Fe3O4) magnetosomes that cause them to align along magnetic field lines while they swim being propelled by two bundles of flagella at velocities up to 300 µm s-1. High-speed microscopy imaging showed the cells move in a straight line rather than in the helical trajectory described for other magnetotactic cocci. Specific genes within the genome of Mf. australis strain IT-1 suggest the strain is capable of nitrogen fixation, sulfur reduction and oxidation, synthesis of intracellular polyphosphate granules and transporting iron with low and high affinity. Mf. australis strain IT-1 and Magnetococcus marinus strain MC-1 are closely related phylogenetically although similarity values between their homologous proteins are not very high. CONCLUSION: Mf. australis strain IT-1 inhabits a constantly changing environment and its complete genome sequence reveals a great metabolic plasticity to deal with these changes. Aside from its chemoautotrophic and chemoheterotrophic metabolism, genomic data indicate the cells are capable of nitrogen fixation, possess high and low affinity iron transporters, and might be capable of reducing and oxidizing a number of sulfur compounds. The relatively large number of genes encoding transporters as well as chemotaxis receptors in the genome of Mf. australis strain IT-1 combined with its rapid swimming velocities, indicate that cells respond rapidly to environmental changes.


Assuntos
Adaptação Fisiológica/genética , Alphaproteobacteria/genética , Alphaproteobacteria/fisiologia , Meio Ambiente , Genômica , Alphaproteobacteria/citologia , Alphaproteobacteria/metabolismo , Magnetossomos/metabolismo , Minerais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica
3.
Fungal Biol ; 120(10): 1175-83, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27647235

RESUMO

In the cactus-yeast-Drosophila model system, the necrotic cladode is used as substrate by a diverse and specific microbiota, which is utilized as food source by Drosophila. Although this association has been the focus of many studies in arid regions of North America, little is known of its composition in South America. This study analysed yeast communities isolated from two South American cacti species: Cereus hildmannianus and Praecereus euchlorus. Fourteen yeast species were isolated and identified by their morpho-physiological character and partial rRNA gene sequencing. Arthropods hatched from the analysed cladodes were identified. There was little similarity between the isolated yeast communities either in terms of cacti species (S = 0.286) or collection sites (S = 0.214-0.335). To the best of the authors' knowledge, this is the first time that Metschnikowia koreensis and Hannaella sinensis have been described in association with cacti. Also, Drosophila buzzatti has not been described in association with Praecereus. The similarity between cactophilic arthropod communities found in the different cacti was low (S = 0.266) and zero when only Drosophila was considered. These results suggest that exploration by Drosophila species is the main factor that drives low yeast community similarity between cacti species.


Assuntos
Cactaceae/microbiologia , Leveduras/isolamento & purificação , Animais , Drosophila/fisiologia , Ecossistema , Filogenia , Leveduras/classificação , Leveduras/genética
4.
Astrobiology ; 13(3): 309-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23510083

RESUMO

Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas , Planeta Terra , Gelo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA