Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 19311, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848419

RESUMO

In this study, we develop a real-time PCR strategy to directly detect and quantify DNA aptamers on functionalized graphene surfaces using a Staphylococcus aureus aptamer (SA20) as demonstration case. We show that real-time PCR allowed aptamer quantification in the range of 0.05 fg to 2.5 ng. Using this quantitative technique, it was possible to determine that graphene functionalization with amino modified SA20 (preceded by a graphene surface modification with thionine) was much more efficient than the process using SA20 with a pyrene modification. We also demonstrated that the functionalization methods investigated were selective to graphene as compared to bare silicon dioxide surfaces. The precise quantification of aptamers immobilized on graphene surface was performed for the first time by molecular biology techniques, introducing a novel methodology of wide application.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Grafite/química , Reação em Cadeia da Polimerase em Tempo Real , Ouro/química , Fenotiazinas/farmacologia , Staphylococcus aureus/química , Propriedades de Superfície
2.
Langmuir ; 34(23): 6903-6911, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29792809

RESUMO

The association of organic molecules with two-dimensional (2D) materials, creating hybrid systems with mutual influences, constitutes an important testbed for both basic science self-assembly studies and perspective applications. Following this concept, in this work, we show a rich phenomenology that is involved in the interaction of thionine with graphene, leading to a hybrid material formed by well-organized self-assembled structures atop graphene. This composite system is investigated by atomic force microscopy, electric transport measurements, Raman spectroscopy, and first principles calculations, which show (1) an interesting time evolution of thionine self-assembled structures atop graphene; (2) a highly oriented final molecular assembly (in accordance with the underlying graphene surface symmetry); and (3) a strong n-type doping effect introduced in graphene by thionine. The nature of the thionine-substrate interaction is further analyzed in experiments using mica as a polar substrate. The present results may help pave the way to achieve tailored 2D material hybrid devices via properly chosen molecular self-assembly processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...