Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 704653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675915

RESUMO

Malaria remains a major public health problem worldwide, and Plasmodium vivax is the most widely distributed malaria parasite. Naturally acquired binding inhibitory antibodies (BIAbs) to region II of the Duffy binding protein (DBPII), a P. vivax ligand that is critical for reticulocyte invasion, are associated with a reduced risk of clinical malaria. Owing to methodological issues in evaluating antibodies that inhibit the DBPII-DARC interaction, a limited number of studies have investigated DBPII BIAbs in P. vivax-exposed populations. Based on the assumption that individuals with a consistent BIAb response are characterized by strain-transcending immune responses, we hypothesized that detecting broadly reactive DBPII antibodies would indicate the presence of BIAb response. By taking advantage of an engineered DBPII immunogen targeting conserved DBPII neutralizing epitopes (DEKnull-2), we standardized a multiplex flow cytometry-based serological assay to detect broadly neutralizing IgG antibodies. For this study, a standard in vitro cytoadherence assay with COS-7 cells expressing DBPII was used to test for DBPII BIAb response in long-term P. vivax-exposed Amazonian individuals. Taken together, the results demonstrate that this DBPII-based multiplex assay facilitates identifying DBPII BIAb carriers. Of relevance, the ability of the multiplex assay to identify BIAb responders was highly accurate when the positivity for all antigens was considered. In conclusion, the standardized DBPII-based flow cytometric assay confirmed that DBPII-BIAb activity was associated with the breadth rather than the magnitude of anti-DBPII antibodies. Altogether, our results suggest that multiplex detection of broadly DBPII-reactive antibodies facilitates preliminary screening of BIAb responders.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários , Antígenos de Protozoários/imunologia , Citometria de Fluxo , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos Antiprotozoários/imunologia , Humanos , Malária Vivax/diagnóstico
2.
Front Plant Sci ; 11: 584698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391299

RESUMO

Selenium (Se) is considered a beneficial element in higher plants when provided at low concentrations. Recently, studies have unveiled the interactions between Se and ethylene metabolism throughout plant growth and development. However, despite the evidence that Se may provide longer shelf life in ethylene-sensitive flowers, its primary action on ethylene biosynthesis and cause-effect responses are still understated. In the present review, we discuss the likely action of Se on ethylene biosynthesis and its consequence on postharvest physiology of cut flowers. By combining Se chemical properties with a dissection of ethylene metabolism, we further highlighted both the potential use of Se solutions and their downstream responses. We believe that this report will provide the foundation for the hypothesis that Se plays a key role in the postharvest longevity of ethylene-sensitive flowers.

3.
Hum Immunol ; 80(7): 517-522, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30853363

RESUMO

INTRODUCTION: Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is the fourth most important tropical disease, which affects approximately 7 million people worldwide. The mechanisms involved in the development of this disease are not completely well understood. An important protective role of regulatory T cells (Treg) in Chagas disease has been observed; however, the specific mechanisms remain unclear. We evaluated apoptosis as a possible mechanism mediated by Treg cells (CD4+CD25HighFOXP3+) to orchestrate the immune response in chronic Chagas disease. METHODS AND RESULTS: Patients with Chagas disease were grouped as the indeterminate (IND; asymptomatic patients with Chagas disease; n = 10) and dilated cardiomyopathy (CARD; n = 10). Healthy T. cruzi-negative individuals (NI; n = 10) were included as a control group. In order to evaluate the apoptotic cell profile, the expression of PD1, PD1L, CD39, CD95, CD95L molecules were investigated. We also evaluated the proportion of CD14+ cells expressing caspase 3. The IND group presented a substantially higher expression of CD39 by Treg cells as compared to the CARD group. On the other hand, the CARD group showed higher expression of PD-1 by Treg cells than both NI and IND groups. Significant positive correlations were observed between Treg CD95L+ cells and CD14 cells expressing caspase 3 as well as between Treg CD39 cells and CD14+ Caspase3+ cells in the IND group. CONCLUSION: Our data indicate that the expressions of different molecules that induce apoptosis are associated with suppressive mechanisms mediated by Treg cells and suggest a possible role for PD1 and PDL1 molecules in the morbidity of chronic Chagas disease.


Assuntos
Antígeno B7-H1/metabolismo , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Chagásica/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Trypanosoma cruzi/imunologia , Adulto , Idoso , Antígenos de Protozoários/imunologia , Apoptose/imunologia , Apirase/metabolismo , Antígenos CD4/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Testes Sorológicos
4.
Vet J ; 244: 112-115, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30825886

RESUMO

Papillomaviruses are among the most widespread animal viruses, with many hosts harbouring multiple virus types. The present study aimed to evaluate the haematological and immunophenotypic profile of cattle infected with bovine papillomavirus (BPV). Blood samples were collected from 10 animals with clinical cutaneous BPV and without clinical papillomatosis (control). Haematological analysis demonstrated a significant reduction in haemoglobin and haematocrit for BPV-infected animals. The results also showed an increase of natural killer cells and a decrease of γδ+ T-cells and the CD4+/CD8+ ratio for the BPV group when compared to the control group. The infection was also found to stimulate a pro-inflammatory profile with the participation of CD8+T cells producing elevated IFN-γ and IL-17. These findings, although preliminary, provide a better understanding of the immune response of cattle infected with BPV.


Assuntos
Papillomavirus Bovino 1/isolamento & purificação , Doenças dos Bovinos/imunologia , Infecções por Papillomavirus/veterinária , Animais , Papillomavirus Bovino 1/patogenicidade , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Estudos de Casos e Controles , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/virologia , Feminino , Imunofenotipagem/veterinária , Células Matadoras Naturais , Masculino , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia
5.
Front Microbiol ; 9: 1608, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105007

RESUMO

The systems biology approach has become an innovative tool when it comes to shedding light on the complex immune response underlying the development/maintenance of distinct clinical forms of Chagas disease. The goal of this study was to describe an integrative overview of Fc-γR expression, cytokine microenvironment and anti-Trypanosoma cruzi IgG interface in indeterminate-(IND) and cardiac-(CARD) patients. Data demonstrated that IND displayed an overall higher Fcγ-R expression (CD16; CD32; CD64) on neutrophils-(NEU), along with (CD16; CD64) on monocytes-(MON) as compared to CARD. Additionally, CARD presented an increased expression of CD32 in B-cells. While preserved frequency of IL-10-producing cells was observed in IND, decreased levels of IL-10+ phagocytes and enhanced TNF+ MON and NK-cells were observed in CARD. T. cruzi-antigen recall in vitro induces a general decrease of Fc-γR expression in Chagas disease patients, especially in CARD. Moreover, T. cruzi-antigen stimuli triggered a concomitant increase of IFN-γ+NEU/TNF+NK-cells and IL-10+MON/IL-10+B-cells in IND. Biomarker signatures further emphasized the contrasting Fc-γR expression and cytokine microenvironment observed in Chagas disease patients with distinct clinical forms. Up-regulation of Fc-γR expression (CD16 on NEU;MON;NK) was observed in IND, whereas a general decrease was reported for CARD. Moreover, while a mixed cytokine microenvironment (TNF; IL-10) was observed in IND, CARD presented a contrasting profile with up-regulation of TNF+NEU and IL-12+NEU. Integrative network analysis revealed a distinct assemblage of biomarkers, with CARD presenting a large number of negative internode connectivity in comparison with IND. The relevant gaps in Fc-γR expression and impaired regulatory cytokine microenvironment interfaced with the anti-T. cruzi IgG reactivity throughout an exacerbated negative connectivity may account for the development/maintenance of the clinical status of cardiac Chagas disease.

6.
Front Microbiol ; 8: 1681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936201

RESUMO

The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and had reduced expression of pattern recognition receptors, such as TLR2, dectin-1 and dectin-2, all involved in the first line of defense against clinically important yeasts. Our data could infer that T. asperelloides spores may confer susceptibility to infection by C. parapsilosis.

7.
Infect Immun ; 84(4): 1123-1136, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857570

RESUMO

Infectious agents are often considered potential triggers of chronic inflammatory disease, including autoimmunity; however, direct evidence is usually lacking. Here we show that following control of acute infection of mice with the myotropic Colombiana strain of Trypanosoma cruzi, parasites persisted in tissue at low levels associated with development of systemic necrotizing vasculitis. Lesions occurred in many but not all organs and tissues, with skeletal muscle arteries being the most severely affected, and were associated with myositis, atrophy, paresis/paralysis, and death. Histopathology showed fibrinoid vascular necrosis, rare amastigote nests within skeletal muscle myocytes, and massive leukocyte infiltrates composed mainly of inflammatory monocytes, F4/80(+)macrophages, and T. cruzi tetramer-specific CD8(+) T lymphocytes capable of producing gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) but not interleukin-17 (IL-17). T. cruzi-specific IgG was detected in sera from infected mice, but antibody deposits and neutrophilic inflammation were not features of the lesions. Thus,T. cruzi infection of mice may be a specific infectious trigger of paralyzing systemic necrotizing vasculitis most severely affecting skeletal muscle, driven by pathogen-specific type I immune responses.


Assuntos
Doença de Chagas/patologia , Paralisia/parasitologia , Trypanosoma cruzi , Vasculite/patologia , Vasculite/parasitologia , Animais , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Regulação da Expressão Gênica/fisiologia , Membro Posterior/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Paralisia/patologia , Parasitemia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vasculite/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...