RESUMO
In the context of increasing demand for renewable alternatives of fuels and chemicals, the valorization of lignin emerges as a value-adding strategy in biorefineries and an alternative to petroleum-derived molecules. One of the compounds derived from lignin is ferulic acid (FA), which can be converted into valuable molecules such as vanillin. In microorganisms, FA biotransformation into vanillin can occur via a two-step reaction catalyzed by the sequential activity of a feruloyl-CoA synthetase (FCS) and an feruloyl-CoA hydratase-lyase (FCHL), which could be exploited industrially. In this study, a prokaryotic FCHL derived from a lignin-degrading microbial consortium (named LM-FCHL) was cloned, successfully expressed in soluble form and purified. The crystal structure was solved and refined at 2.1 Å resolution. The LM-FCHL is a hexamer composed of a dimer of trimers, which showed to be quite stable under extreme pH conditions. Finally, small angle X-ray scattering corroborates the hexameric state in solution and indicates flexibility in the protein structure. The present study contributes to the field of lignin valorization to valuable molecules by establishing the biophysical and structural characterization for a novel FCHL member of unique characteristics.
Assuntos
Benzaldeídos/metabolismo , Ácidos Cumáricos/metabolismo , Hidroliases/química , Lignina/metabolismo , Acil Coenzima A/metabolismo , Hidroliases/metabolismo , Concentração de Íons de Hidrogênio , Consórcios Microbianos , Modelos Moleculares , Multimerização ProteicaRESUMO
Solid-state ionic conductor is an essential and critical part of electrochemical devices such as batteries and sensors. Nano-sized silver iodide (AgI) is the most promising ionic conductor due to its superionic conductivity at room temperature. In recent years, proteins have been used as organic templates to obtain high-performance solid-state ionic conductors as well as to extend their applications in a biosensor. Here, we report the unprecedented ultrafast synthesis of thermally stable protein-coated AgI nanoparticles (NPs) through the photo-irradiation method for solid-state electrolyte. The synthesis was performed using a hyperthermostable bacterial ß-glucosidase. The protein-coated AgI NPs with an approximate diameter of 13 nm showed that the controllable transition from the α- to ß-/γ-phase was drastically suppressed down to 41 °C in the cooling process. After drying, the product represents a thermally stable organic-inorganic hybrid system with superionic conductivity. It is noteworthy that the superionic conductivity (σ Ë 0.14 S/cm at 170 °C) of thermally stable protein-coated AgI NPs is maintained during several thermal cycles (25-170 °C). To our knowledge, this is the first report showing the diffusion of mobile Ag+ ions on the surface of the AgI NPs through a protein matrix. The facile synthesis method and high performance of the protein-coated AgI NPs may provide a latent application in the mass production of nanobatteries and other technological applications.
Assuntos
Iodetos/química , Nanopartículas/química , Compostos de Prata/química , Temperatura , beta-Glucosidase/química , Condutividade Elétrica , Bactérias Anaeróbias Gram-Negativas/enzimologia , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície , beta-Glucosidase/metabolismoRESUMO
Mycobacterium abscessus complex has been characterized in the last decade as part of a cluster of mycobacteria that evolved from an opportunistic to true human pathogen; however, the factors responsible for pathogenicity are still undefined. It appears that the success of mycobacterial infection is intrinsically related with the capacity of the bacteria to regulate intracellular iron levels, mostly using iron storage proteins. This study evaluated two potential M. abscessus subsp. massiliense genes involved in iron storage. Unlike other opportunist or pathogenic mycobacteria studied, M. abscessus complex has two genes similar to ferritins from M. tuberculosis (Rv3841), and in M. abscessus subsp. massiliense, those genes are annotated as mycma_0076 and mycma_0077. Molecular dynamic analysis of the predicted expressed proteins showed that they have a ferroxidase center. The expressions of mycma_0076 and mycma_0077 genes were modulated by the iron levels in both in vitro cultures as well as infected macrophages. Structural studies using size-exclusion chromatography, circular dichroism spectroscopy and dynamic light scattering showed that r0076 protein has a structure similar to those observed in the ferritin family. The r0076 forms oligomers in solution most likely composed of 24 subunits. Functional studies with recombinant proteins, obtained from heterologous expression of mycma_0076 and mycma_0077 genes in Escherichia coli, showed that both proteins were capable of oxidizing Fe2+ into Fe3+, demonstrating that these proteins have a functional ferroxidase center. In conclusion, two ferritins proteins were shown, for the first time, to be involved in iron storage in M. abscessus subsp. massiliense and their expressions were modulated by the iron levels.
RESUMO
Lignin is a major obstacle for cost-effective conversion of cellulose into fermentable sugars. Non-productive adsorption onto insoluble lignin fragments and interactions with soluble phenols are important inhibition mechanisms of cellulases, including ß-glucosidases. Here, we examined the inhibitory effect of tannic acid (TAN), a model polyphenolic compound, on ß-glucosidases from the bacterium Thermotoga petrophila (TpBGL1 and TpBGL3) and archaeon Pyrococcus furiosus (PfBGL1). The results revealed that the inhibition effects on ß-glucosidases were TAN concentration-dependent. TpBGL1 and TpBGL3 were more tolerant to the presence of TAN when compared with PfBGL1, while TpBGL1 was less inhibited when compared with TpBGL3. In an attempt to better understand the inhibitory effect, the interaction between TAN and ß-glucosidases were analyzed by isothermal titration calorimetry (ITC). Furthermore, the exposed hydrophobic surface areas in ß-glucosidases were analyzed using a fluorescent probe and compared with the results of inhibition and ITC. The binding constants determined by ITC for the interactions between TAN and ß-glucosidases presented the same order of magnitude. However, the number of binding sites and exposed hydrophobic surface areas varied for the ß-glucosidases studied. The binding between TAN and ß-glucosidases were driven by enthalpic effects and with an unfavorable negative change in entropy upon binding. Furthermore, the data suggest that there is a high correlation between exposed hydrophobic surface areas and the number of binding sites on the inhibition of microbial ß-glucosidases by TAN. These studies can be useful for biotechnological applications.
Assuntos
Inibidores Enzimáticos/farmacologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Pyrococcus furiosus/enzimologia , Taninos/farmacologia , beta-Glucosidase/metabolismo , Proteínas Arqueais/antagonistas & inibidores , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Calorimetria , Relação Dose-Resposta a Droga , Escherichia coli , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Pyrococcus furiosus/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tensoativos/farmacologia , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/química , beta-Glucosidase/genéticaRESUMO
The ß-glucosidases are important enzymes employed in a large number of processes and industrial applications, including biofuel production from biomass. Therefore, in this study, we reported for the first time the photobiosynthesis of stable and functional silver/silver chloride nanoparticles (Ag/AgCl-NPs) using two hyperthermostable bacterial ß-glucosidases with industrial potential. The syntheses were straightforward and rapid processes carried out by mixing ß-glucosidase and silver nitrate (in buffer 10mM Tris-HCl, pH 8) under irradiation with light (over a wavelength range of 450-600nm), therefore, compatible with the green chemistry procedure. Synthesized Ag/AgCl-NPs were characterized using a series of physical techniques. Absorption spectroscopy showed a strong absorption band centered at 460nm due to surface plasmon resonance of the Ag-NPs. X-ray diffraction analysis revealed that the Ag/AgCl-NPs were purely crystalline in nature. Under electron microscopy, Ag/AgCl-NPs of variable diameter ranging from 10 to 100nm can be visualized. Furthermore, electron microscopy, zeta potential and Fourier transform infrared spectroscopy results confirmed the presence of ß-glucosidases coating and stabilizing the Ag/AgCl-NPs. Finally, the results showed that the enzymatic activities were maintained in the ß-glucosidases assisted Ag/AgCl-NPs. The information described here should provide a useful basis for future studies of ß-glucosidases assisted Ag/AgCl-NPs, including biotechnological applications.
Assuntos
Luz , Nanopartículas Metálicas/química , Compostos de Prata/química , Compostos de Prata/metabolismo , Prata/química , Temperatura , beta-Glucosidase/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/efeitos da radiação , Indústrias , Modelos Moleculares , Conformação Proteica , beta-Glucosidase/químicaRESUMO
CelE1 is a cold-active endo-acting glucanase with high activity at a broad temperature range and under alkaline conditions. Here, we examined the effects of pH on the secondary and tertiary structures, net charge, and activity of CelE1. Although variation in pH showed a small effect in the enzyme structure, the activity was highly influenced at acidic conditions, while reached the optimum activity at pH 8. Furthermore, to estimate whether CelE1 could be used as detergent additives, CelE1 activity was evaluated in the presence of surfactants. Ionic and nonionic surfactants were not able to reduce CelE1 activity significantly. Therefore, CelE1 was found to be promising candidate for use as detergent additives. Finally, we reported a thermodynamic analysis based on the structural stability and the chemical unfolding/refolding process of CelE1. The results indicated that the chemical unfolding proceeds as a reversible two-state process. These data can be useful for biotechnological applications.