Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 21(1): 195, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762776

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS: We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS: SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Epigênese Genética , Feminino , Glioblastoma/etiologia , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Masculino , Camundongos , Neurogênese , Fenótipo , Prognóstico , Estados Unidos/epidemiologia
2.
NPJ Genom Med ; 5: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969990

RESUMO

Therapy resistance and recurrence in high-grade gliomas are driven by their populations of glioma stem cells (GSCs). Thus, detailed molecular characterization of GSCs is needed to develop more effective therapies. We conducted a study to identify differences in the splicing profile and expression of long non-coding RNAs in proneural and mesenchymal GSC cell lines. Genes related to cell cycle, DNA repair, cilium assembly, and splicing showed the most differences between GSC subgroups. We also identified genes distinctly associated with survival among patients of mesenchymal or proneural subgroups. We determined that multiple long non-coding RNAs with increased expression in mesenchymal GSCs are associated with poor survival of glioblastoma patients. In summary, our study established critical differences between proneural and mesenchymal GSCs in splicing profiles and expression of long non-coding RNA. These splicing isoforms and lncRNA signatures may contribute to the uniqueness of GSC subgroups, thus contributing to cancer phenotypes and explaining differences in therapeutic responses.

3.
Am J Pathol ; 186(9): 2271-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27470713

RESUMO

The conserved RNA-binding protein Musashi1 (MSI1) has been characterized as a stem cell marker, controlling the balance between self-renewal and differentiation and as a key oncogenic factor in numerous solid tumors, including glioblastoma. To explore the potential use of MSI1 targeting in therapy, we studied MSI1 in the context of radiation sensitivity. Knockdown of MSI1 led to a decrease in cell survival and an increase in DNA damage compared to control in cells treated with ionizing radiation. We subsequently examined mechanisms of double-strand break repair and found that loss of MSI1 reduces the frequency of nonhomologous end-joining. This phenomenon could be attributed to the decreased expression of DNA-protein kinase catalytic subunit, which we have previously identified as a target of MSI1. Collectively, our results suggest a role for MSI1 in double-strand break repair and that its inhibition may enhance the effect of radiotherapy.


Assuntos
Reparo do DNA/fisiologia , Glioblastoma/patologia , Proteínas do Tecido Nervoso/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Tolerância a Radiação/fisiologia , Domínio Catalítico/fisiologia , Linhagem Celular Tumoral , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Catalítico , Imunofluorescência , Humanos , Immunoblotting , Reação em Cadeia da Polimerase
4.
Genome Biol ; 17(1): 125, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287018

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive type of brain tumor. Currently, GBM has an extremely poor outcome and there is no effective treatment. In this context, genomic and transcriptomic analyses have become important tools to identify new avenues for therapies. RNA-binding proteins (RBPs) are master regulators of co- and post-transcriptional events; however, their role in GBM remains poorly understood. To further our knowledge of novel regulatory pathways that could contribute to gliomagenesis, we have conducted a systematic study of RBPs in GBM. RESULTS: By measuring expression levels of 1542 human RBPs in GBM samples and glioma stem cell samples, we identified 58 consistently upregulated RBPs. Survival analysis revealed that increased expression of 21 RBPs was also associated with a poor prognosis. To assess the functional impact of those RBPs, we modulated their expression in GBM cell lines and performed viability, proliferation, and apoptosis assays. Combined results revealed a prominent oncogenic candidate, SNRPB, which encodes core spliceosome machinery components. To reveal the impact of SNRPB on splicing and gene expression, we performed its knockdown in a GBM cell line followed by RNA sequencing. We found that the affected genes were involved in RNA processing, DNA repair, and chromatin remodeling. Additionally, genes and pathways already associated with gliomagenesis, as well as a set of general cancer genes, also presented with splicing and expression alterations. CONCLUSIONS: Our study provides new insights into how RBPs, and specifically SNRPB, regulate gene expression and directly impact GBM development.


Assuntos
Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Genômica , Glioblastoma/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Centrais de snRNP/genética , Apoptose/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proliferação de Células , Sobrevivência Celular/genética , Análise por Conglomerados , Biologia Computacional/métodos , Éxons , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genômica/métodos , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Íntrons , Anotação de Sequência Molecular , Gradação de Tumores , Prognóstico , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transcriptoma , Proteínas Centrais de snRNP/metabolismo
5.
RNA Biol ; 13(4): 400-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26760575

RESUMO

hnRNPs are polyvalent RNA binding proteins that have been implicated in a range of regulatory roles including splicing, mRNA decay, translation, and miRNA metabolism. A variety of genome wide studies have taken advantage of methods like CLIP and RIP to identify the targets and binding sites of RNA binding proteins. However, due to the complex nature of RNA-binding proteins, these studies are incomplete without assays that characterize the impact of RBP binding on mRNA target expression. Here we used a suite of high-throughput approaches (RIP-Seq, iCLIP, RNA-Seq and shotgun proteomics) to provide a comprehensive view of hnRNP H1s ensemble of targets and its role in splicing, mRNA decay, and translation. The combination of RIP-Seq and iCLIP allowed us to identify a set of 1,086 high confidence target transcripts. Binding site motif analysis of these targets suggests the TGGG tetramer as a prevalent component of hnRNP H1 binding motif, with particular enrichment around intronic hnRNP H1 sites. Our analysis of the target transcripts and binding sites indicates that hnRNP H1s involvement in splicing is 2-fold: it directly affects a substantial number of splicing events, but also regulates the expression of major components of the splicing machinery and other RBPs with known roles in splicing regulation. The identified mRNA targets displayed function enrichment in MAPK signaling and ubiquitin mediated proteolysis, which might be main routes by which hnRNP H1 promotes tumorigenesis.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sítios de Ligação , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/fisiologia , Humanos , Splicing de RNA
6.
Mol Cell Biol ; 35(17): 2965-78, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26100017

RESUMO

The conserved RNA-binding protein Musashi1 (MSI1) has emerged as a key oncogenic factor in numerous solid tumors, including glioblastoma. However, its mechanism of action has not yet been established comprehensively. To identify its target genes comprehensively and determine the main routes by which it influences glioblastoma phenotypes, we conducted individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) experiments. We confirmed that MSI1 has a preference for UAG sequences contained in a particular structural context, especially in 3' untranslated regions. Although numerous binding sites were also identified in intronic sequences, our RNA transcriptome sequencing analysis does not favor the idea that MSI1 is a major regulator of splicing in glioblastoma cells. MSI1 target mRNAs encode proteins that function in multiple pathways of cell proliferation and cell adhesion. Since these associations indicate potentially new roles for MSI1, we investigated its impact on glioblastoma cell adhesion, morphology, migration, and invasion. These processes are known to underpin the spread and relapse of glioblastoma, in contrast to other tumors where metastasis is the main driver of recurrence and progression.


Assuntos
Adesão Celular/genética , Glioblastoma/genética , Glioblastoma/patologia , Invasividade Neoplásica/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Processamento Alternativo/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Humanos , Invasividade Neoplásica/patologia , Proteínas do Tecido Nervoso/biossíntese , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/biossíntese , Análise de Sequência de RNA
7.
Wiley Interdiscip Rev RNA ; 6(3): 291-310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25515586

RESUMO

Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , RNA/química , Processamento Alternativo , Biologia Computacional/métodos , Bases de Dados Genéticas , Biossíntese de Proteínas , RNA/biossíntese , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Especificidade por Substrato
8.
Mol Microbiol ; 88(4): 827-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23617823

RESUMO

Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/metabolismo
9.
BMC Microbiol ; 13: 10, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23327097

RESUMO

BACKGROUND: Amastins are surface glycoproteins (approximately 180 residues long) initially described in Trypanosoma cruzi as particularly abundant during the amastigote stage of this protozoan parasite. Subsequently, they have been found to be encoded by large gene families also present in the genomes of several species of Leishmania and in other Trypanosomatids. Although most amastin genes are organized in clusters associated with tuzin genes and are up-regulated in the intracellular stage of T. cruzi and Leishmania spp, distinct genomic organizations and mRNA expression patterns have also been reported. RESULTS: Based on the analysis of the complete genome sequences of two T. cruzi strains, we identified a total of 14 copies of amastin genes in T. cruzi and showed that they belong to two of the four previously described amastin subfamilies. Whereas δ-amastin genes are organized in two or more clusters with alternating copies of tuzin genes, the two copies of ß-amastins are linked together in a distinct chromosome. Most T. cruzi amastins have similar surface localization as determined by confocal microscopy and western blot analyses. Transcript levels for δ-amastins were found to be up-regulated in amastigotes from several T. cruzi strains, except in the G strain, which is known to have low infection capacity. In contrast, in all strains analysed, ß-amastin transcripts are more abundant in epimastigotes, the stage found in the insect vector. CONCLUSIONS: Here we showed that not only the number and diversity of T. cruzi amastin genes is larger than what has been predicted, but also their mode of expression during the parasite life cycle is more complex. Although most T. cruzi amastins have a similar surface localization, only δ-amastin genes have their expression up-regulated in amastigotes. The results showing that a sub-group of this family is up-regulated in epimastigotes, suggest that, in addition of their role in intracellular amastigotes, T. cruzi amastins may also serve important functions during the insect stage of the parasite life cycle. Most importantly, evidence for their role as virulence factors was also unveiled from the data showing that δ-amastin expression is down regulated in a strain presenting low infection capacity.


Assuntos
Regulação da Expressão Gênica , Ordem dos Genes , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , RNA Mensageiro/biossíntese , Trypanosoma cruzi/química , Trypanosoma cruzi/genética , Animais , Western Blotting , Perfilação da Expressão Gênica , Variação Genética , Microscopia Confocal
10.
Curr Colorectal Cancer Rep ; 8(4): 290-297, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23914149

RESUMO

Aberrant gene expression is the cause and the consequence of tumorigenesis. A major component of gene expression is translation regulation; a process whose main players are RNA-binding-proteins (RBPs). More than 800 RBPs have been identified in the human genome and several of them have been shown to control gene networks associated with relevant cancer processes. A more systematic characterization of RBPs starts to reveal that similar to transcription factors, they can function as tumor suppressors or oncogenes. A relevant example is Musashi1 (Msi1), which is emerging as a critical regulator of tumorigenesis in multiple cancer types, including colon cancer. Msi1 is a stem marker in several tissues and is critical in maintaining the balance between self-renewal and differentiation. However, a boost in Msi1 expression can most likely lead cells towards an oncogenic pathway. In this article, we discuss the parallels between Msi1 function in normal renewal of intestinal epithelium and in colon cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...