Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068622

RESUMO

Scientifically informed decisions for the long-term conservation of extant genetic diversity should combine in situ and ex situ conservation methods. The aim of the present study was to assess if a progeny plantation consisting of several open pollinated (OP) families and established for breeding purposes can also serve as an ex situ conservation plantation, using the case study of a Lithuanian progeny trial of Alnus glutinosa, a keystone species of riparian ecosystems that warrants priority conservation actions. We employed 17 nuclear microsatellite (Simple Sequence Repeat) markers and compared the genetic diversity and copy number of the captured alleles of 22 OP progeny families from this plantation, with 10 wild A. glutinosa populations, originating from the two provenance regions of the species in Lithuania. We conclude that the progeny plantation could be used as an ex situ plantation for the A. glutinosa populations from the first provenance region (represented by eight genetic conservation units (GCU)). Based on the present study's results, we can expect that the A. glutinosa progeny plantation harbors enough genetic diversity of wild A. glutinosa populations from the first provenance region. This progeny plantation can serve as a robust ex situ collection containing local alleles present in at least one wild population with at least 0.05 frequency with 25 replications.

2.
Front Plant Sci ; 14: 1139331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089661

RESUMO

Forest species in the course of their evolution have experienced several environmental challenges, which since historic times include anthropogenic pollution. The effects of pollution on the genetic and epigenetic diversity in black pine (Pinus nigra) forests were investigated in the Amyntaio - Ptolemais - Kozani Basin, which has been for decades the largest lignite mining and burning center of Greece, with a total installed generating capacity of about 4.5 GW, operating for more than 70 years and resulting in large amounts of primary air pollutant emissions, mainly SO2, NOx and PM10. P. nigra, a biomarker for air pollution and a keystone species of affected natural ecosystems, was examined in terms of phenology (cone and seed parameters), genetics (283 AFLP loci) and epigenetics (606 MSAP epiloci), using two populations (exposed to pollution and control) of the current (mature trees) and future (embryos) stand. It was found that cone, seed, as well as genetic diversity parameters, did not show statistically significant differences between the exposed population and the control. Nevertheless, statistically significant differences were detected at the population epigenetic level. Moreover, there was a further differentiation regarding the intergenerational comparison: while the epigenetic diversity does not substantially change in the two generations assessed in the control population, epigenetic diversity is significantly higher in the embryo population compared to the parental stand in the exposed population. This study sheds a light to genome dynamics in a forest tree population exposed to long term atmospheric pollution burden and stresses the importance of assessing both genetics and epigenetics in biomonitoring applications.

3.
Mol Ecol ; 29(24): 4797-4811, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33063352

RESUMO

Severe bottlenecks significantly diminish the amount of genetic diversity and the speed at which it accumulates (i.e., evolutionary rate). They further compromise the efficiency of natural selection to eliminate deleterious variants, which may reach fixation in the surviving populations. Consequently, expanding and adapting to new environments may pose a significant challenge when strong bottlenecks result in genetic pauperization. Herein, we surveyed the patterns of nucleotide diversity, molecular adaptation and genetic load across 177 gene-loci in a circum-Mediterranean conifer (Pinus pinea L.) that represents one of the most extreme cases of genetic pauperization in widespread outbreeding taxa. We found very little genetic variation in both hypervariable nuclear microsatellites (SSRs) and gene-loci, which translated into genetic diversity estimates one order of magnitude lower than those previously reported for pines. Such values were consistent with a strong population decline that began some ~1 Ma. Comparisons with the related and parapatric maritime pine (Pinus pinaster Ait.) revealed reduced rates of adaptive evolution (α and ωa ) and a significant accumulation of genetic load. It is unlikely that these are the result from differences in mutation rate or linkage disequilibrium between the two species; instead they are the presumable outcome of contrasting demographic histories affecting both the speed at which these taxa accumulate genetic diversity, and the global efficacy of selection. Future studies, and programs for conservation and management, should thus start testing for the effects of genetic load on fitness, and integrating such effects into predictive models.


Assuntos
Pinus , Árvores , Animais , Carga Genética , Variação Genética , Repetições de Microssatélites/genética , Pinus/genética
4.
Plant J ; 103(4): 1420-1432, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32391598

RESUMO

Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety "Big Star*" and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome-wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.


Assuntos
Domesticação , Genoma de Planta/genética , Prunus avium/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA Satélite/genética , Genes de Plantas/genética , Variação Genética/genética , Genética Populacional
5.
Gene ; 562(2): 180-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25726917

RESUMO

Genetic inheritance and epigenetic inheritance are significant determinants of plant evolution, adaptation and plasticity. We studied inheritance of restriction site polymorphisms by the f-AFLP method and epigenetic DNA cytosine methylation inheritance by the f-MSAP technique. The study involved parents and 190 progeny of a Cupressus sempervirens L. full-sib family. Results from AFLP genetic data revealed that 71.8% of the fragments studied are under Mendelian genetic control, whereas faithful Mendelian inheritance for the MSAP fragments was low (4.29%). Further, MSAP fragment analysis showed that total methylation presented a mean of 28.2%, which was higher than the midparent value, while maternal inheritance was higher (5.65%) than paternal (3.01%). Interestingly de novo methylation in the progeny was high (19.65%) compared to parental methylation. Genetic and epigenetic distances for parents and offspring were not correlated (R(2)=0.0005). Furthermore, we studied correlation of total relative methylation and CG methylation with growth (height, diameter). We found CG/CNG methylation (N: A, C, T) to be positively correlated with height and diameter, while total relative methylation and CG methylation were positively correlated with height. Results are discussed in light of further research needed and of their potential application in breeding.


Assuntos
Cupressus/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA