Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(5): 6260-6266, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529817

RESUMO

We report on the optical-gain properties of channel waveguides patterned into lattice-matched KGdxLuyEr1-x-y(WO4)2 layers grown onto undoped KY(WO4)2 substrates by liquid phase epitaxy. A systematic investigation of gain is performed for five different Er3+ concentrations in the range of 0.75 to 10at.% and different pump powers and signal wavelengths. In pump-probe-beam experiments, relative internal gain, i.e., signal enhancement minus absorption loss of light propagating in the channel waveguide, is experimentally demonstrated, with a maximum value of 12 ± 5 dB/cm for signals at the peak-emission wavelength of 1534.7 nm.

2.
Opt Express ; 24(23): 26825-26837, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27857411

RESUMO

We study the spectroscopic properties of thin films of potassium ytterbium gadolinium double tungstates, KYb0.57Gd0.43(WO4)2, and potassium ytterbium lutetium double tungstates, KYb0.76Lu0.24(WO4)2, specifically at the central absorption line near 981 nm wavelength, which is important for amplifiers and lasers. The absorption cross-section of both thin films is found to be similar to those of bulk potassium rare-earth double tungstates, suggesting that the crystalline layers retain their spectroscopic properties albeit having >50 at.% Yb3+ concentration. The influence of sample temperature is investigated and found to substantially affect the measured absorption cross-section. Since amplifiers and lasers typically operate above room temperature due to pump-induced heating, the temperature dependence of the peak-absorption cross-section of the KYb0.57Gd0.43(WO4)2 is evaluated for the sample being heated from 20 °C to 170 °C, resulting in a measured reduction of peak-absorption cross-section at the transitions near 933 nm and 981 nm by ~40% and ~52%, respectively. It is shown that two effects, the change of Stark-level population and linewidth broadening due to intra-manifold relaxation induced by temperature-dependent electron-phonon interaction, contribute to the observed behavior. The effective emission cross-sections versus temperature have been calculated. Luminescence-decay measurements show no significant dependence of the luminescence lifetime on temperature.

3.
Opt Lett ; 38(23): 5090-3, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281517

RESUMO

We report Q-switched operation of a planar waveguide laser by evanescent-field interaction with single-walled carbon nanotubes deposited on top of the waveguide. The saturable-absorber-integrated gain medium, which operates based on evanescent-field interaction, enables the realization of a diode-pumped 2.5-cm-long Q-switched Yb:KYW waveguide laser emitting at 1030 nm. With such a compact cavity design, we achieve maximum output powers of up to 30 mW, corresponding to a single-pulse energy of 124 nJ, at 241 kHz repetition rate. The shortest pulse duration of 433 ns is generated at a repetition rate of 231 kHz.

4.
Adv Mater ; 24(10): OP19-22, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22020929

RESUMO

Modal gain per unit length versus launched pump power is predicted and measured in a 47.5 at.% Yb(3+) -doped potassium double tungstate channel waveguide. The highest measured gain exceeds values previously reported for rare-earth-ion-doped materials by two orders of magnitude.


Assuntos
Microtecnologia/métodos , Fenômenos Ópticos , Itérbio/química , Absorção , Corantes/química , Potássio/química , Semicondutores
5.
Opt Express ; 18(25): 26107-12, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164959

RESUMO

In KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguides grown onto KY(WO(4))(2) substrates by liquid phase epitaxy and microstructured by Ar+ beam etching, we produced 418 mW of continuous-wave output power at 1023 nm with a slope efficiency of 71% and a threshold of 40 mW of launched pump power at 981 nm. The degree of output coupling was 70%. By grating tuning in an extended cavity and pumping at 930 nm, we demonstrated laser operation from 980 nm to 1045 nm. When pumping at 973 nm, lasing at 980 nm with a record-low quantum defect of 0.7% was achieved.


Assuntos
Lasers de Estado Sólido , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...