Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400149, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881177

RESUMO

Recently, supercapacitors (SCs) are extensively explored as effective energy storage devices. Specifically, asymmetric SCs are being developed to enhance energy density using suitable materials with favorable nanostructures. This study describes the construction of a bismuth copper selenite (BCS-200) working electrode with an ultrathin nanosheet (UTNS) architecture. This morphology is achieved using a low-cost electrodeposition (ED) method, followed by annealing. The impact of ED time on the development of morphology is studied by synthesizing comparative electrodes simultaneously. The optimized BCS-200 electrode prepared with a deposition time of 200 s shows higher specific capacity/capacitance (Cs/Csc) values of 330.9 mAh g-1/2206.6 F g-1 than the other synthesized electrodes (BCS-100, BCS-150, BCS-250, and BCS-300). Besides, a vapor-grown carbon fiber (VGCF)-added Fe2O3 composite coated on nickel foam (NF) is developed as a negative electrode. The VGCFs@Fe2O3/NF electrode exhibits the (Cs/Csc) values of 183.5 mAh g-1/734.4 F g-1, which is associated with ultra-high cycling stability. In addition, the fabricated BCS-200 and VGCFs@Fe2O3/NF electrodes are combined to construct a wearable semi-solid-state asymmetric SC (SSASC) with an energy density (Ed) of 20.5 Wh kg-1 and a cycling stability of 91.7% over 40000 charge/discharge cycles. Furthermore, the real-time applicability of the SSASC is verified by powering it in practical applications.

2.
Nanoscale ; 15(31): 13049-13061, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493392

RESUMO

Highly-efficient electroactive materials with distinctive electrochemical features, along with suitable strategies to prepare hetero-nanoarchitectures incorporating two or more transition metal selenides, are currently required to increase charge storage ability. Herein, a one-pot solvothermal approach is used to develop iron-nickel selenide spring-lawn-like architectures (FeNiSe SLAs) on nickel (Ni) foam. The porous Ni foam scaffold not only enables the uniform growth of FeNiSe SLAs but also serves as an Ni source. The effect of reaction time on their morphological and electrochemical properties is investigated. The FeNiSe-15 h electrode shows high areal capacity (493.2 µA h cm-2) and superior cycling constancy. The as-assembled aqueous hybrid cell (AHC) demonstrates high areal capacity and a decent rate capability of 59.4% (50 mA cm-2). The AHC exhibits good energy and power densities, along with excellent cycling stability. Furthermore, to confirm its practicability, the AHC is employed to drive portable electronic appliances by charging it with wind energy. The electrocatalytic activity of FeNiSe-based materials to complete the oxygen evolution reaction (OER) is explored. Among them, the FeNiSe-15 h catalyst shows good OER performance at a current density of 50 mA cm-2. This general synthesis approach may initiate a strategy of advanced metal selenide-based materials for multifunctional applications.

3.
Adv Sci (Weinh) ; 9(8): e2104877, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064771

RESUMO

Evolving cost-effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP-CoP2 (CNP-CP) composite is in situ deposited on carbon fabric by a one-step hydrothermal technique. The CNP-CP reveals hybrid nanoarchitecture (3D-on-1D HNA), i.e., cashew fruit-like nanostructures and nanocones. The CNP-CP HNA electrode delivers higher areal capacity (82.8 µAh cm-2 ) than the other electrodes. Furthermore, a hybrid cell assembled with CNP-CP HNA shows maximum energy and power densities of 31 µWh cm-2 and 10.9 mW cm-2 , respectively. Exclusively, the hybrid cell demonstrates remarkable durability over 30 000 cycles. In situ/operando X-ray absorption near-edge structure analysis confirms the reversible changes in valency of Co and Ni elements in CNP-CP material during real-time electrochemical reactions.  Besides, a quasi-solid-state device unveils its practicability by powering electronic components. Meanwhile, the CNP-CP HNA verifies its higher OER activity than the other catalysts by revealing lower overpotential (230 mV). Also, it exhibits relatively small Tafel slope (38 mV dec-1 ) and stable OER activity over 24 h. This preparation strategy may initiate the design of advanced TMP-based materials for multifunctional applications.

4.
Small Methods ; 5(8): e2100335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34927874

RESUMO

Transition bimetallic sulfides are exploited as high-capacity electrode materials in energy storage devices owing to their abundant electroactive sites and relatively high electrical conductivity compared with metal oxides. Here, an in situ conversion of metal ions into NiS2 -CoMo2 S4 vertically aligned nanorod arrays on nickel foam (NS-CMS NRAs@NF) using a one-step hydrothermal technique to address the "dead-mass" limitation and multi-step preparation methods is reported. An in situ-converted NS-CMS NRAs obtained for 12 h of reaction time (NS-CMS NRAs-12 h@NF) delivers a superior areal capacity of 780 µAh cm-2 to the other NS-CMS electrodes synthesized for 6 h (543.1 µAh cm-2 ) and 18 h (636.7 µAh cm-2 ) at 7 mA cm-2 . A coin-cell-type hybrid supercapacitor (HSC) is also fabricated to unveil the practical adaptability of NS-CMS NRAs-12 h@NF electrode. Utilizing its structural and active material intriguing features, assembled coin-cell-type HSC achieves a high areal capacitance of 246.2 mF cm-2 (5 mA cm-2 ) along with maximum areal energy density (147 µWh cm-2 ) and power density (21.3 mW cm-2 ), respectively. Furthermore, the capability of coin-cell-type HSC in real-time applications is also inspected. This work promotes in situ deposition strategy to fabricate metal sulfide-based nanostructures for high-performance electrochemical capacitors.

5.
Small Methods ; 5(12): e2100907, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928019

RESUMO

An ion-exchange process is a promising approach to design advanced electrode materials for high-performance energy storage devices. Herein, a nanostructured Ni3 Sn2 S2 -CoS (NSS-CS) composite is fabricated by successive hydrothermal and ion-exchange processes. Since the incorporation of redox-rich cobalt element enables the NSS-CS composite to be more electrochemically active, its impact on the electrochemical performance is therefore extensively studied. Particularly, the NSS-CS-0.2 g electrode material delivered a high areal capacity of 830.4 µAh cm-2 at 5 mA cm-2 . Additionally, a room-temperature wet-chemical approach is employed to anchor nanosilver (nAg)-particles on the NSS-CS-0.2 g (nAg@NSS-CS-0.2 g) to further exalt its electrokinetics. Consequently, the nAg@NSS-CS-0.2 g electrode shows a higher areal capacity of 948.5 µAh cm-2 (193.5 mAh g-1 ) than that of the NSS-CS-0.2 g. Furthermore, its practicability is also examined by assembling a hybrid cell. The assembled hybrid cell delivers a high areal capacity of 969.2 µAh cm-2 (49.2 mAh g-1 ) at 7 mA cm-2 and maximum areal energies and power densities of 0.784 mWh cm-2 (40.8 Wh kg-1 ) and 45 mW cm-2 (2347.4 W kg-1 ), respectively. The efficiency of the hybrid cells is also tested by harvesting solar energy, followed by energizing electronic components. This work can pave the way for significant attraction in designing advanced electrodes for energy-related fields.

6.
Small ; 16(48): e2003983, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33155409

RESUMO

Metal-organic frameworks (MOFs) are promising materials in diverse fields because of their constructive traits of varied structural topologies, high porosity, and high surface area. MOFs are also an ideal precursor/template to derive porous and functional morphologies. Herein, Co3 V2 O8 nanohexagonal prisms are grafted on CuV2 O6 nanorod arrays (CuV-CoV)-grown copper foam (CF) using solution-processing methods, followed by thermal treatment. Direct preparation of active material on CF can potentially eliminate electrochemically inactive and non-conductive binders, leading to improved charge-transfer rate. Furthermore, solution-processing methods are simple and cost-effective. Owing to versatile valence states and good redox activity, the vanadium-incorporated mixed metal oxides (CuV-CoV) exhibited superior electrochemical performance in lithium (Li)-ion battery and supercapacitor (SC) studies. Furthermore, hollow carbon particles (HCPs) derived from MOF particles (MOF-HCPs) are used as the anode material in SCs. A hybrid SC (HSC) fabricated with CuV-CoV and MOF-HCP materials exhibited noteworthy electrochemical properties. Moreover, a solid-state HSC (SSHSC) is constructed and its real-time feasibility is investigated by harvesting the dynamic energy of a bicycle with the help of a direct current generator. The charged SSHSCs potentially powered various electronic components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA