Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5220, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064778

RESUMO

The moon's monthly cycle synchronizes reproduction in countless marine organisms. The mass-spawning bristle worm Platynereis dumerilii uses an endogenous monthly oscillator set by full moon to phase reproduction to specific days. But how do organisms recognize specific moon phases? We uncover that the light receptor L-Cryptochrome (L-Cry) discriminates between different moonlight durations, as well as between sun- and moonlight. A biochemical characterization of purified L-Cry protein, exposed to naturalistic sun- or moonlight, reveals the formation of distinct sun- and moonlight states characterized by different photoreduction- and recovery kinetics of L-Cry's co-factor Flavin Adenine Dinucleotide. In Platynereis, L-Cry's sun- versus moonlight states correlate with distinct subcellular localizations, indicating different signaling. In contrast, r-Opsin1, the most abundant ocular opsin, is not required for monthly oscillator entrainment. Our work reveals a photo-ecological concept for natural light interpretation involving a "valence interpreter" that provides entraining photoreceptor(s) with light source and moon phase information.


Assuntos
Criptocromos , Lua , Luz , Opsinas , Reprodução , Luz Solar
2.
PeerJ ; 9: e10911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665032

RESUMO

Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.

3.
Nat Ecol Evol ; 5(2): 204-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432133

RESUMO

The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370-430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing Gi signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time.


Assuntos
Opsinas , Poliquetos , Animais , Ecossistema , Opsinas/genética , Fotoperíodo , Estações do Ano
4.
Front Physiol ; 10: 900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354531

RESUMO

The marine bristle worm Platynereis dumerilii is a useful functional model system for the study of the circadian clock and its interplay with others, e.g., circalunar clocks. The focus has so far been on the worm's head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here, we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm's chromatophores, investigate locomotion as read-out and include molecular analyses. We establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here, we show that upon decapitation worms exhibit strongly reduced activity levels. While still following the light-dark cycle, locomotor rhythmicity under constant darkness is less clear. We also observe the rhythmicity of pigments in the worm's individual chromatophores, confirming their circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation. Our works thus provides the first basic characterization of the peripheral circadian clock of P. dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms, while circadian changes in chromatophore size can continue for several days in the absence of light/dark changes and the head. Thus, in Platynereis the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should also be considered in "non-conventional" molecular model systems, i.e., outside Drosophila melanogaster, Danio rerio, and Mus musculus, and build a basic foundation for future investigations of interactions of clocks with different period lengths in marine organisms.

5.
Bioessays ; 40(10): e1800107, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30151860

RESUMO

The acoel worm Symsagittifera roscoffensis, an early offshoot of the Bilateria and the only well-studied marine acoel that lives in a photosymbiotic relationship, exhibits a centralized nervous system, brain regeneration, and a wide repertoire of complex behaviors such as circatidal rhythmicity, photo/geotaxis, and social interactions. While this animal can be collected by the thousands and is studied historically, significant progress is made over the last decade to develop it as an emerging marine model. The authors here present the feasibility of culturing it in the laboratory and describe the progress made on different areas, including genomic and tissue architectures, highlighting the associated challenges. In light of these developments, and on the ability to access abundant synchronized embryos, the authors put forward S. roscoffensis as a marine system to revisit questions in the areas of photosymbiosis, regeneration, chronobiology, and the study of complex behaviors from a molecular and evolutionary perspective.


Assuntos
Encéfalo/fisiologia , Platelmintos/fisiologia , Regeneração/fisiologia , Animais , Organismos Aquáticos , Comportamento Animal , Encéfalo/citologia , Fenômenos Cronobiológicos , Ritmo Circadiano/genética , Microalgas/fisiologia , Microbiota/fisiologia , Compostos de Sulfônio/metabolismo , Simbiose , Células-Tronco Totipotentes/fisiologia
6.
Mar Genomics ; 14: 23-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24568948

RESUMO

The Cryptochrome/Photolyase Family (CPF) represents an ancient group of widely distributed UV-A/blue-light sensitive proteins sharing common structures and chromophores. During the course of evolution, different CPFs acquired distinct functions in DNA repair, light perception and circadian clock regulation. Previous phylogenetic analyses of the CPF have allowed reconstruction of the evolution and distribution of the different CPF super-classes in the tree of life. However, so far only limited information is available from the CPF orthologs in aquatic organisms that evolved in environments harboring great diversity of life forms and showing peculiar light distribution and rhythms. To gain new insights into the evolutionary and functional relationships within the CPF family, we performed a detailed study of CPF members from marine (diatoms, sea urchin and annelid) and freshwater organisms (teleost) that populate diverse habitats and exhibit different life strategies. In particular, we first extended the CPF family phylogeny by including genes from aquatic organisms representative of several branches of the tree of life. Our analysis identifies four major super-classes of CPF proteins and importantly singles out the presence of a plant-like CRY in diatoms and in metazoans. Moreover, we show a dynamic evolution of Cpf genes in eukaryotes with various events of gene duplication coupled to functional diversification and gene loss, which have shaped the complex array of Cpf genes in extant aquatic organisms. Second, we uncover clear rhythmic diurnal expression patterns and light-dependent regulation for the majority of the analyzed Cpf genes in our reference species. Our analyses reconstruct the molecular evolution of the CPF family in eukaryotes and provide a solid foundation for a systematic characterization of novel light activated proteins in aquatic environments.


Assuntos
Anelídeos/genética , Criptocromos/genética , Desoxirribodipirimidina Fotoliase/genética , Diatomáceas/genética , Evolução Molecular , Peixes/genética , Família Multigênica/genética , Ouriços-do-Mar/genética , Animais , Sequência de Bases , Análise por Conglomerados , Mineração de Dados , Duplicação Gênica/genética , Funções Verossimilhança , Biologia Marinha , Modelos Genéticos , Filogenia , Proteínas/genética , Alinhamento de Sequência , Transcriptoma
7.
Cell Rep ; 5(1): 99-113, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24075994

RESUMO

Life is controlled by multiple rhythms. Although the interaction of the daily (circadian) clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly) clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm's forebrain. The worm's forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function.


Assuntos
Anelídeos/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Animais , Anelídeos/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Feminino , Masculino , Dados de Sequência Molecular
8.
Proc Natl Acad Sci U S A ; 110(1): 193-8, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23284166

RESUMO

Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis, a reference species for evolutionary and developmental comparisons. EGFP controlled by cis-regulatory elements of r-opsin, a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6, a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2, two zebrafish orthologs of Platynereis r-opsin, reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system.


Assuntos
Evolução Biológica , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Poliquetos/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Primers do DNA/genética , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal , Dados de Sequência Molecular , Opsinas/genética , Análise de Sequência de DNA , Peixe-Zebra
9.
Proc Natl Acad Sci U S A ; 108(20): 8367-72, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21536888

RESUMO

Different sea urchin species show a vast variety of responses to variations in light intensity; however, despite this behavioral evidence for photosensitivity, light sensing in these animals has remained an enigma. Genome information of the recently sequenced purple sea urchin (Strongylocentrotus purpuratus) allowed us to address this question from a previously unexplored molecular perspective by localizing expression of the rhabdomeric opsin Sp-opsin4 and Sp-pax6, two genes essential for photoreceptor function and development, respectively. Using a specifically designed antibody against Sp-Opsin4 and in situ hybridization for both genes, we detected expression in two distinct groups of photoreceptor cells (PRCs) located in the animal's numerous tube feet. Specific reactivity of the Sp-Opsin4 antibody with sea star optic cushions, which regulate phototaxis, suggests a similar visual function in sea urchins. Ultrastructural characterization of the sea urchin PRCs revealed them to be of a microvillar receptor type. Our data suggest that echinoderms, in contrast to chordates, deploy a microvillar, r-opsin-expressing PRC type for vision, a feature that has been so far documented only in protostome animals. Surprisingly, sea urchin PRCs lack any associated screening pigment. Indeed, one of the tube foot PRC clusters may account for directional vision by being shaded through the opaque calcite skeleton. The PRC axons connect to the animal internal nervous system, suggesting an integrative function beyond local short circuits. Because juveniles display no phototaxis until skeleton completion, we suggest a model in which the entire sea urchin, deploying its skeleton as PRC screening device, functions as a huge compound eye.


Assuntos
Sistema Nervoso/citologia , Células Fotorreceptoras/fisiologia , Ouriços-do-Mar/fisiologia , Visão Ocular/fisiologia , Animais , Axônios , Opsinas/análise , Ouriços-do-Mar/anatomia & histologia , Ouriços-do-Mar/citologia , Especificidade da Espécie
10.
Bioessays ; 33(3): 165-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21254149

RESUMO

The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Ritmo Circadiano , Animais , Relógios Biológicos , Peixes/fisiologia , Biologia Marinha , Lua , Ondas de Maré
11.
J Exp Zool B Mol Dev Evol ; 312(7): 679-85, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19405098

RESUMO

What drives evolution? This was one of the main questions raised at the final ZOONET meeting in Budapest, Hungary, in November 2008. The meeting marked the conclusion of ZOONET, an EU-funded Marie-Curie Research Training Network comprising nine research groups from all over Europe (Max Telford, University College London; Michael Akam, University of Cambridge; Detlev Arendt, EMBL Heidelberg; Maria Ina Arnone, Stazione Zoologica Anton Dohrn Napoli; Michalis Averof, IMBB Heraklion; Graham Budd, Uppsala University; Richard Copley, University of Oxford; Wim Damen, University of Cologne; Ernst Wimmer, University of Göttingen). ZOONET meetings and practical courses held during the past four years provided researchers from diverse backgrounds--bioinformatics, phylogenetics, embryology, palaeontology, and developmental and molecular biology--the opportunity to discuss their work under a common umbrella of evolutionary developmental biology (Evo Devo). The Budapest meeting emphasized in-depth discussions of the key concepts defining Evo Devo, and bringing together ZOONET researchers with external speakers who were invited to present their views on the evolution of animal form. The discussion sessions addressed four main topics: the driving forces of evolution, segmentation, fossils and phylogeny, and the future of Evo Devo.


Assuntos
Biodiversidade , Padronização Corporal/fisiologia , Biologia do Desenvolvimento/tendências , Evolução Molecular , Fósseis , Animais , Genética Populacional , Hungria , Morfogênese , Filogenia
12.
Dev Biol ; 300(1): 461-75, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17067569

RESUMO

Rhodopsin-type G-protein-coupled receptors (GPCRs) contribute the majority of sensory receptors in vertebrates. With 979 members, they form the largest GPCR family in the sequenced sea urchin genome, constituting more than 3% of all predicted genes. The sea urchin genome encodes at least six Opsin proteins. Of these, one rhabdomeric, one ciliary and two G(o)-type Opsins can be assigned to ancient bilaterian Opsin subfamilies. Moreover, we identified four greatly expanded subfamilies of rhodopsin-type GPCRs that we call sea urchin specific rapidly expanded lineages of GPCRs (surreal-GPCRs). Our analysis of two of these groups revealed genomic clustering and single-exon gene structures similar to the most expanded group of vertebrate rhodopsin-type GPCRs, the olfactory receptors. We hypothesize that these genes arose by rapid duplication in the echinoid lineage and act as chemosensory receptors of the animal. In support of this, group B surreal-GPCRs are most prominently expressed in distinct classes of pedicellariae and tube feet of the adult sea urchin, structures that have previously been shown to react to chemical stimuli and to harbor sensory neurons in echinoderms. Notably, these structures also express different opsins, indicating that sea urchins possess an intricate molecular set-up to sense their environment.


Assuntos
Genoma , Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G/genética , Opsinas de Bastonetes/genética , Ouriços-do-Mar/genética , Sequência de Aminoácidos , Animais , Sequência Consenso , Hibridização In Situ , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , RNA/genética , RNA/isolamento & purificação , Receptores Acoplados a Proteínas G/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...