Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759563

RESUMO

Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.

2.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902005

RESUMO

T lymphocytes are key players in adaptive immune responses through the recognition of peptide antigens through the T Cell Receptor (TCR). After TCR engagement, a signaling cascade is activated, leading to T cell activation, proliferation, and differentiation into effector cells. Delicate control of activation signals coupled to the TCR is needed to avoid uncontrolled immune responses involving T cells. It has been previously shown that mice deficient in the expression of the adaptor NTAL (Non-T cell activation linker), a molecule structurally and evolutionarily related to the transmembrane adaptor LAT (Linker for the Activation of T cells), develop an autoimmune syndrome characterized by the presence of autoantibodies and enlarged spleens. In the present work we intended to deepen investigation into the negative regulatory functions of the NTAL adaptor in T cells and its potential relationship with autoimmune disorders. For this purpose, in this work we used Jurkat cells as a T cell model, and we lentivirally transfected them to express the NTAL adaptor in order to analyze the effect on intracellular signals associated with the TCR. In addition, we analyzed the expression of NTAL in primary CD4+ T cells from healthy donors and Rheumatoid Arthritis (RA) patients. Our results showed that NTAL expression in Jurkat cells decreased calcium fluxes and PLC-γ1 activation upon stimulation through the TCR complex. Moreover, we showed that NTAL was also expressed in activated human CD4+ T cells, and that the increase of its expression was reduced in CD4+ T cells from RA patients. Our results, together with previous reports, suggest a relevant role for the NTAL adaptor as a negative regulator of early intracellular TCR signaling, with a potential implication in RA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Artrite Reumatoide , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Jurkat , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo
3.
Front Immunol ; 13: 1054920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569841

RESUMO

The LAT transmembrane adaptor is essential to transduce intracellular signals triggered by the TCR. Phosphorylation of its four C-terminal tyrosine residues (136, 175, 195, and 235 in mouse LAT) recruits several proteins resulting in the assembly of the LAT signalosome. Among those tyrosine residues, the one found at position 136 of mouse LAT plays a critical role for T cell development and activation. The kinetics of phosphorylation of this residue is delayed as compared to the three other C-terminal tyrosines due to a conserved glycine residue found at position 135. Mutation of this glycine into an aspartate residue (denoted LATG135D) increased TCR signaling and altered antigen recognition in human Jurkat T cells and ex vivo mouse T cells. Here, using a strain of LATG135D knockin mice, we showed that the LATG135D mutation modifies thymic development, causing an increase in the percentage of CD4+CD8+ double-positive cells, and a reduction in the percentage of CD4+ and CD8+ single-positive cells. Interestingly, the LATG135D mutation alters thymic development even in a heterozygous state. In the periphery, the LATG135D mutation reduces the percentage of CD8+ T cells and results in a small increment of γδ T cells. Remarkably, the LATG135D mutation dramatically increases the percentage of central memory CD8+ T cells. Finally, analysis of the proliferation and activation of T lymphocytes shows increased responses of T cells from mutant mice. Altogether, our results reinforce the view that the residue preceding Tyr136 of LAT constitutes a crucial checkpoint in T cell development and activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Tirosina , Camundongos , Animais , Humanos , Tirosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Mutação
4.
Cells ; 10(2)2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562083

RESUMO

Intracellular signaling through the T cell receptor (TCR) is essential for T cell development and function. Proper TCR signaling requires the sequential activities of Lck and ZAP-70 kinases, which result in the phosphorylation of tyrosine residues located in the CD3 ITAMs and the LAT adaptor, respectively. LAT, linker for the activation of T cells, is a transmembrane adaptor protein that acts as a scaffold coupling the early signals coming from the TCR with downstream signaling pathways leading to cellular responses. The leukemic T cell line Jurkat and its derivative mutants J.CaM1.6 (Lck deficient) and J.CaM2 (LAT deficient) have been widely used to study the first signaling events upon TCR triggering. In this work, we describe the loss of LAT adaptor expression found in a subline of J.CaM1.6 cells and analyze cis-elements responsible for the LAT expression defect. This new cell subline, which we have called J.CaM1.7, can re-express LAT adaptor after Protein Kinase C (PKC) activation, which suggests that activation-induced LAT expression is not affected in this new cell subline. Contrary to J.CaM1.6 cells, re-expression of Lck in J.CaM1.7 cells was not sufficient to recover TCR-associated signals, and both LAT and Lck had to be introduced to recover activatory intracellular signals triggered after CD3 crosslinking. Overall, our work shows that the new LAT negative J.CaM1.7 cell subline could represent a new model to study the functions of the tyrosine kinase Lck and the LAT adaptor in TCR signaling, and their mutual interaction, which seems to constitute an essential early signaling event associated with the TCR/CD3 complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Bases , Cálcio/metabolismo , Sobrevivência Celular , Ativação Enzimática , Humanos , Células Jurkat , Lentivirus/metabolismo , Proteínas de Membrana/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas/genética , Proteína Quinase C/metabolismo
5.
Front Cell Dev Biol ; 8: 561503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042995

RESUMO

The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.

7.
Front Immunol ; 9: 115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456532

RESUMO

The adaptor protein linker for activation of T cells (LAT) has an essential role transducing activatory intracellular signals coming from the TCR/CD3 complex. Previous reports have shown that upon T-cell activation, LAT interacts with the tyrosine kinase Lck, leading to the inhibition of its kinase activity. LAT-Lck interaction seemed to depend on a stretch of negatively charged amino acids in LAT. Here, we have substituted this segment of LAT between amino acids 113 and 126 with a non-charged segment and expressed the mutant LAT (LAT-NIL) in J.CaM2 cells in order to analyze TCR signaling. Substitution of this segment in LAT prevented the activation-induced interaction with Lck. Moreover, cells expressing this mutant form of LAT showed a statistically significant increase of proximal intracellular signals such as phosphorylation of LAT in tyrosine residues 171 and 191, and also enhanced ZAP70 phosphorylation approaching borderline statistical significance (p = 0.051). Nevertheless, downstream signals such as Ca2+ influx or MAPK pathways were partially inhibited. Overall, our data reveal that LAT-Lck interaction constitutes a key element regulating proximal intracellular signals coming from the TCR/CD3 complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular , Humanos , Proteína-Tirosina Quinase ZAP-70/metabolismo
8.
Front Microbiol ; 8: 2595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354102

RESUMO

Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

9.
J Leukoc Biol ; 100(2): 351-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26830332

RESUMO

Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Proteína Ligante Fas/metabolismo , Receptor fas/metabolismo , Linfócitos B/citologia , Células Cultivadas , Humanos , Células Jurkat , Ativação Linfocitária , Fosforilação , Proteólise , Transdução de Sinais , Tirosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...