Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37894122

RESUMO

Current knowledge of the microbial diversity of shallow-water hydrothermal vents is still limited. Recent evidence suggests that these peculiar and heterogeneous systems might host highly diversified microbial assemblages with novel or poorly characterized lineages. In the present work, we used 16S rRNA gene metabarcoding to provide novel insights into the diversity of the bacterial and archaeal assemblages in seawater and sediments of three shallow-water hydrothermal systems of Panarea Island (Tyrrhenian Sea). The three areas were characterized by hot, cold, or intermediate temperatures and related venting activities. Microbial biodiversity in seawater largely differed from the benthic one, both in α-diversity (i.e., richness of amplicon sequence variants-ASVs) and in prokaryotic assemblage composition. Furthermore, at the class level, the pelagic prokaryotic assemblages were very similar among sites, whereas the benthic microbial assemblages differed markedly, reflecting the distinct features of the hydrothermal activities at the three sites we investigated. Our results show that ongoing high-temperature emissions can influence prokaryotic α-diversity at the seafloor, increasing turnover (ß-)diversity, and that the intermediate-temperature-venting spot that experienced a violent gas explosion 20 years ago now displays the highest benthic prokaryotic diversity. Overall, our results suggest that hydrothermal vent dynamics around Panarea Island can contribute to an increase in the local heterogeneity of physical-chemical conditions, especially at the seafloor, in turn boosting the overall microbial (γ-)diversity of this peculiar hydrothermal system.

2.
Front Microbiol ; 14: 1233893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727286

RESUMO

Introduction: Shallow hydrothermal vents are considered natural laboratories to study the effects of acidification on biota, due to the consistent CO2 emissions with a consequent decrease in the local pH. Methods: Here the microbial communities of water and sediment samples from Levante Bay (Vulcano Island) with different pH and redox conditions were explored by Next Generation Sequencing techniques. The taxonomic structure was elucidated and compared with previous studies from the same area in the last decades. Results and discussion: The results revealed substantial shifts in the taxonomic structure of both bacterial and archaeal communities, with special relevance in the sediment samples, where the effects of external parameters probably act for a long time. The study demonstrates that microbial communities could be used as indicators of acidification processes, by shaping the entire biogeochemical balance of the ecosystem in response to stress factors. The study contributes to understanding how much these communities can tell us about future changes in marine ecosystems.

3.
Biology (Basel) ; 12(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36979112

RESUMO

The present paper represents the first all-encompassing study on all Mediterranean holopelagic octopods belonging to Argonautoidea (Argonauta argo, Ocythoe tuberculata, Tremoctopus gracilis, Tremoctopus violaceus). Argonautoidea octopuses were collected by different sampling methods in the Strait of Messina and southern Tyrrhenian Sea. The aim of this paper was to improve knowledge, using information from different data sources, such as the study of stranded individuals or accidental caught specimens, as well as the analysis of stomach content of large pelagic fishes. Moreover, we investigated their taxonomic profile through the amplification of the mitochondrial cytochrome c oxidase subunit I (COI). Overall, 47 fresh holopelagic octopods were collected, including valuable records of rare males. Moreover, 330 Argonautoidea octopuses were found in the stomachs of 800 predators. The results provided evidence that these cephalopods are more abundant than thought in the past. The molecular approach supported the ecological results with interesting insights. The similarity-based identifications and tree-based methods indicated that three females could be identified as Tremoctopus violaceus in agreement with their morphological classifications. The sequences obtained from the two T. gracilis individuals were clustered with the sequences of Tremoctopus violaceus from the Gulf of Mexico and were differentiated from the sequences attributed to T. gracilis and T. robsoni. The study represents a valuable contribution to the genetic characterization of Mediterranean individuals of the genera Tremoctopus, Argonauta and Ocythoe.

4.
Microorganisms ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208933

RESUMO

Environmental contamination by heavy metals (HMs) poses several indirect risks to human health, including the co-spreading of genetic traits conferring resistance to both HMs and antibiotics among micro-organisms. Microbial antibiotic resistance (AR) acquisition is enhanced at sites anthropogenically polluted by HMs, as well as in remote systems naturally enriched in HMs, such as hydrothermal vents in the deep sea. However, to date, the possible role of hydrothermal vents at shallower water depths as hot spots of microbial AR gain and spreading has not been tested, despite the higher potential risks associated with the closer vicinity of such ecosystems to coasts and human activities. In this work, we collected waters and sediments at the Panarea shallow-water hydrothermal vents, testing the presence of culturable marine bacteria and their sensitivity to antibiotics and HMs. All of the bacterial isolates showed resistance to at least one antibiotic and one HM and, most notably, 80% of them displayed multi-AR on average to 12 (min 8, max 15) different antibiotics, as well as multi-HM tolerance. We show that our isolates displayed high similarity (≥99%) to common marine bacteria, affiliating with Actinobacteria, Gammaproteobacteria, Alphaproteobacteria and Firmicutes, and all displayed wide growth ranges for temperature and salinity during in vitro physiological tests. Notably, the analysis of the genomes available in public databases for their closest relatives highlighted the lack of genes for AR, posing new questions on the origin of multi-AR acquisition in this peculiar HM-rich environment. Overall, our results point out that shallow-water hydrothermal vents may contribute to enhance AR acquisition and spreading among common marine bacteria in coastal areas, highlighting this as a focus for future research.

5.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759215

RESUMO

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Assuntos
Halobacteriaceae/fisiologia , Nanoarchaeota/fisiologia , Polissacarídeos/metabolismo , Simbiose/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Técnicas de Cocultura , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Genômica , Filogenia
6.
Microorganisms ; 8(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580393

RESUMO

Microorganisms inhabiting saline environments are an interesting ecological model for the study of the adaptation of organisms to extreme living conditions and constitute a precious resource of enzymes and bioproducts for biotechnological applications. We analyzed the microbial communities in nine ponds with increasing salt concentrations (salinity range 4.9-36.0%) of the Saltern of Margherita di Savoia (Italy), the largest thalassohaline saltern in Europe. A deep-metabarcoding NGS procedure addressing separately the V5-V6 and V3-V4 hypervariable regions of the 16S rRNA gene of Bacteria and Archaea, respectively, and a CARD-FISH (catalyzed reporter deposition fluorescence in situ hybridization) analysis allowed us to profile the dynamics of microbial populations at the different salt concentrations. Both the domains were detected throughout the saltern, even if the low relative abundance of Archaea in the three ponds with the lowest salinities prevented the construction of the relative amplicon libraries. The highest cell counts were recorded at 14.5% salinity for Bacteria and at 24.1% salinity for Archaea. While Bacteria showed the greatest number of genera in the first ponds (salinity range 4.9-14.5%), archaeal genera were more numerous in the last ponds of the saltern (salinity 24.1-36.0%). Among prokaryotes, Salinibacter was the genus with the maximum abundance (~49% at 34.6% salinity). Other genera detected at high abundance were the archaeal Haloquadratum (~43% at 36.0% salinity) and Natronomonas (~18% at 13.1% salinity) and the bacterial "Candidatus Aquiluna" (~19% at 14.5% salinity). Interestingly, "Candidatus Aquiluna" had not been identified before in thalassohaline waters.

7.
Nat Commun ; 8(1): 60, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680072

RESUMO

Intriguing, yet uncultured 'ARMAN'-like archaea are metabolically dependent on other members of the microbial community. It remains uncertain though which hosts they rely upon, and, because of the lack of complete genomes, to what extent. Here, we report the co-culturing of ARMAN-2-related organism, Mia14, with Cuniculiplasma divulgatum PM4 during the isolation of this strain from acidic streamer in Parys Mountain (Isle of Anglesey, UK). Mia14 is highly enriched in the binary culture (ca. 10% genomic reads) and its ungapped 0.95 Mbp genome points at severe voids in central metabolic pathways, indicating dependence on the host, C. divulgatum PM4. Analysis of C. divulgatum isolates from different sites and shotgun sequence data of Parys Mountain samples suggests an extensive genetic exchange between Mia14 and hosts in situ. Within the subset of organisms with high-quality genomic assemblies representing the 'DPANN' superphylum, the Mia14 lineage has had the largest gene flux, with dozens of genes gained that are implicated in the host interaction.In the absence of complete genomes, the metabolic capabilities of uncultured ARMAN-like archaea have been uncertain. Here, Golyshina et al. apply an enrichment culture technique and find that the ungapped genome of the ARMAN-like archaeon Mia14 has lost key metabolic pathways, suggesting dependence on the host archaeon Cuniculiplasma divulgatum.


Assuntos
Archaea/classificação , Archaea/fisiologia , Archaea/genética , Regulação da Expressão Gênica em Archaea , Variação Genética , Genoma Arqueal , Microscopia de Fluorescência , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
8.
Stand Genomic Sci ; 11: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182430

RESUMO

Strain M27-SA2 was isolated from the deep-sea salt-saturated anoxic lake Medee, which represents one of the most hostile extreme environments on our planet. On the basis of physiological studies and phylogenetic positioning this extremely halophilic euryarchaeon belongs to a novel genus 'Halanaeroarchaeum' within the family Halobacteriaceae. All members of this genus cultivated so far are strict anaerobes using acetate as the sole carbon and energy source and elemental sulfur as electron acceptor. Here we report the complete genome sequence of the strain M27-SA2 which is composed of a 2,129,244-bp chromosome and a 124,256-bp plasmid. This is the second complete genome sequence within the genus Halanaeroarchaeum. We demonstrate that genome of 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors complete metabolic pathways for acetate and sulfur catabolism and for de novo biosynthesis of 19 amino acids. The genomic analysis also reveals that 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors two prophage loci and one CRISPR locus, highly similar to that of Kulunda Steppe (Altai, Russia) isolate 'H. sulfurireducens' HSR2(T). The discovery of sulfur-respiring acetate-utilizing haloarchaeon in deep-sea hypersaline anoxic lakes has certain significance for understanding the biogeochemical functioning of these harsh ecosystems, which are incompatible with life for common organisms. Moreover, isolations of Halanaeroarchaeum members from geographically distant salt-saturated sites of different origin suggest a high degree of evolutionary success in their adaptation to this type of extreme biotopes around the world.

9.
Environ Microbiol Rep ; 7(3): 450-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25682761

RESUMO

Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Biota , Descompressão , Água do Mar/microbiologia , Adaptação Biológica , Archaea/fisiologia
10.
Environ Microbiol ; 17(2): 364-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25622758

RESUMO

Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it 'Lake Kryos' after a nearby depression. This lake is filled with magnesium chloride (MgCl2 )-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2 -rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater-Kryos brine interface and managed to recover mRNA from the 2.27-3.03 M MgCl2 layer (equivalent to 0.747-0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related to Desulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27-3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Mar Mediterrâneo , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Salinidade , Sais/análise , Cloreto de Sódio/análise , Microbiologia da Água
11.
Microorganisms ; 3(3): 500-17, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27682102

RESUMO

Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms. Here, we investigated a stable three-component microbial consortium obtained from the brine of the recently discovered deep-sea salt-saturated Lake Thetis. The trophic network of this consortium, established at salinities up to 240, relies on fermentative decomposition of common osmoprotectant glycine betaine (GB). Similarly to known extreme halophilic anaerobic GB-degrading enrichments, the initial step of GB degradation starts with its reductive cleavage to trimethylamine and acetate, carried out by the fermenting member of the Thetis enrichment, Halobacteroides lacunaris TB21. In contrast to acetate, which cannot be easily oxidized in salt-saturated anoxic environments, trimethylamine represents an advantageous C1-substrate for methylotrophic methanogenic member of the Thetis enrichment, Methanohalophilus sp. TA21. This second member of the consortium likely produces hydrogen via methylotrophic modification of reductive acetyl-CoA pathway because the initial anaerobic GB cleavage reaction requires the consumption of reducing equivalents. Ecophysiological role of the third member of the Thetis consortium, Halanaerobium sp. TB24, which lacks the capability of either GB or trimethylamine degradation, remains yet to be elucidated. As it is true for cultivated members of family Halanaerobiaceae, the isolate TB24 can obtain energy primarily by fermenting simple sugars and producing hydrogen as one of the end products. Hence, by consuming of TB21 and TA21 metabolites, Halanaerobium sp. TB24 can be an additional provider of reducing equivalents required for reductive degradation of GB. Description of the Thetis GB-degrading consortium indicated that anaerobic degradation of osmoregulatory molecules may play important role in the overall turnover of organic carbon in anoxic hypersaline biotopes.

12.
Environ Microbiol Rep ; 6(6): 709-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25756124

RESUMO

Ammonium-oxidizing chemoautotrophic members of Thaumarchaea are proposed to be the key players in the assimilation of bicarbonate in the dark (ABD). However, this process may also involve heterotrophic metabolic pathways, such as fixation of carbon dioxide (CO2) via various anaplerotic reactions. We collected samples from the depth of 4900 m at the Matapan-Vavilov Deep (MVD) station (Hellenic Trench, Eastern Mediterranean) and used the multiphasic approach to study the ABD mediators in this deep-sea ecosystem. At this depth, our analysis indicated the occurrence of actively CO2-fixing heterotrophic microbial assemblages dominated by Gammaproteobacteria with virtually no Thaumarchaea present. [14C]-bicarbonate incorporation experiments combined with shotgun [14C]-proteomic analysis identified a series of proteins of gammaproteobacterial origin. More than quarter of them were closely related with Alteromonas macleodii 'deep ecotype' AltDE, the predominant organism in the microbial community of MVD. The present study demonstrated that in the aphotic/hadal zone of the Mediterranean Sea, the assimilation of bicarbonate is associated with both chemolithoauto- and heterotrophic ABD. In some deep-sea areas, the latter may predominantly contribute to the de novo synthesis of organic carbon which points at the important and yet underestimated role heterotrophic bacterial populations can play the in global carbon cycle/sink in the ocean interior.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Bicarbonatos/metabolismo , Carbono/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , Processos Heterotróficos , Mar Mediterrâneo , Filogenia , Água do Mar/análise
13.
Sci Rep ; 3: 3554, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24352146

RESUMO

Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [(14)C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.


Assuntos
Alphaproteobacteria , Gammaproteobacteria , Halobacteriales , Lagos/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Bicarbonatos/química , Biodiversidade , Ecossistema , Epsilonproteobacteria , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/metabolismo , Região do Mediterrâneo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Solução Salina Hipertônica , Tolerância ao Sal , Água do Mar/química , Cloreto de Sódio , Microbiologia da Água
14.
Environ Microbiol ; 15(6): 1717-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23253149

RESUMO

We used a combination of molecular and microbiological approaches to determine the activity, abundance and diversity of archaeal populations inhabiting meromictic saline Lake Faro (Messina, Italy). Analysis of archaeal 16S rRNA, amoA, accA and hbd genes and transcripts revealed that sub- and anoxic layers of Lake Faro are primarily inhabited by the organisms related to the clusters of Marine Group I.1a of Thaumarchaeota frequently recovered from oxygen-depleted marine ecosystems. These organisms dominated the metabolically active archaea down to the bottom of the lake, indicating their adaptation to recurrent changes in the levels of water column hypoxia. The upper microaerobic layer of Lake Faro redoxcline has the maximal rates of dark primary production much lower than those of other previously studied pelagic redoxclines, but comparable to the values of meso- and bathypelagic areas of Mediterranean Sea. Application of bacterial inhibitors, especially azide, significantly declined the CO2 fixation rates in the low interface and monimolimnion, whereas archaea-specific inhibitor had effect only in upper part of the redoxcline. Based on these findings, we hypothesize that dark bicarbonate fixation in suboxic zone of Lake Faro results mainly from archaeal activity which is affected by the predicted lack in oxygen in lower layers.


Assuntos
Archaea/metabolismo , Ecossistema , Lagos/microbiologia , Salinidade , Anaerobiose , Archaea/classificação , Archaea/genética , Biodiversidade , Dióxido de Carbono/metabolismo , Microbiologia Ambiental , Genes Arqueais/genética , Itália , Mar Mediterrâneo , Dados de Sequência Molecular , Oxigênio/química , Filogenia , RNA Ribossômico 16S/genética
15.
Environ Microbiol ; 13(8): 2250-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21518212

RESUMO

In September 2008, an expedition of the RV Urania was devoted to exploration of the genomic richness of deep hypersaline anoxic lakes (DHALs) located in the Western part of the Mediterranean Ridge. Approximately 40 nautical miles SE from Urania Lake, the presence of anoxic hypersaline lake, which we named Thetis, was confirmed by swath bathymetry profiling and through immediate sampling casts. The brine surface of the Thetis Lake is located at a depth of 3258 m with a thickness of ≈ 157 m. Brine composition was found to be thalassohaline, saturated by NaCl with a total salinity of 348‰, which is one of highest value reported for DHALs. Similarly to other Mediterranean DHALs, seawater-brine interface of Thetis represents a steep pycno- and chemocline with gradients of salinity, electron donors and acceptors and posseses a remarkable stratification of prokaryotic communities, observed to be more metabolically active in the upper interface where redox gradient was sharper. [(14) C]-bicarbonate fixation analysis revealed that microbial communities are sustained by sulfur-oxidizing chemolithoautotrophic primary producers that thrive within upper interface. Besides microaerophilic autotrophy, heterotrophic sulfate reduction, methanogenesis and anaerobic methane oxidation are likely the predominant processes driving the ecosystem of Thetis Lake.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Salinidade , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Fenômenos Bioquímicos/genética , Metano/metabolismo , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...