Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(33): 81174-81188, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314563

RESUMO

This study analyzes the distribution of nine potentially toxic trace elements (arsenic, antimony, bromine, cobalt, chromium, mercury, rubidium, selenium, and zinc) in sediments and plankton from two small mesotrophic lakes in a non-industrialized area impacted by the Caviahue-Copahue volcanic complex (CCVC). The two lakes have different plankton community structures and received different amounts of pyroclastic material after the last CCVC eruption. Trace element concentrations of surface sediments differed between lakes, according to the composition of the volcanic ashes deposited in the lakes. The size of organisms was the principal factor influencing the accumulation of most trace elements in plankton within each lake, being trace element concentrations generally higher in the microplankton than in the mesozooplankton. The planktonic biomass in the shallower lake was dominated by small algae and copepods, while mixotrophic ciliates and different-sized cladocerans dominated the deeper lake. These differences in the community structure and species composition influenced the trace element bioaccumulation, especially in microplankton, while habitat use and feeding strategies seem more relevant in mesozooplankton bioaccumulation. This work contributes to the scarce records of trace elements and their dynamics in plankton from freshwater ecosystems impacted by volcanic activity.


Assuntos
Plâncton , Oligoelementos , Plâncton/química , Lagos/química , Ecossistema , Argentina , Altitude , Monitoramento Ambiental
2.
Environ Sci Pollut Res Int ; 25(16): 15422-15435, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29564707

RESUMO

Zinc (Zn) bioaccumulation and trophic transfer were analyzed in the food web of Lake Nahuel Huapi, a deep, unpolluted ultraoligotrophic system in North Patagonia. Benthic macroinvertebrates, plankton, and native and introduced fish were collected at three sites. The effect of pyroclastic inputs on Zn levels in lacustrine food webs was assessed by studying the impact of the eruption of Puyehue-Cordón Caulle volcanic complex (PCCVC) in 2011, by performing three sampling campaigns immediately before and after the PCCVC eruption, and after 2 years of recovery of the ecosystem. Zinc trophodynamics in L. Nahuel Huapi food web was assessed using nitrogen stable isotopes (δ15N). There was no significant increase of Zn concentrations ([Zn]) in L. Nahuel Huapi biota after the PCCVC eruption, despite the evidence of [Zn] increase in lake water that could be associated with volcanic ash leaching. The organisms studied exhibited [Zn] above the threshold level considered for dietary deficiency, regulating Zn adequately even under a catastrophic situations like PCCVC 2011 eruption. Zinc concentrations exhibited a biodilution pattern in the lake's food web. To the best of our knowledge, present research is the first report of Zn biodilution in lacustrine systems, and the first to study Zn transfer in a freshwater food web including both pelagic and benthic compartments.


Assuntos
Organismos Aquáticos/metabolismo , Exposição Ambiental/análise , Cadeia Alimentar , Erupções Vulcânicas , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo , Animais , Argentina , Monitoramento Ambiental , Peixes/metabolismo , Invertebrados/metabolismo , Lagos , Plâncton/metabolismo
3.
Sci Total Environ ; 612: 1311-1319, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28898937

RESUMO

Niche segregation between introduced and native fish in Lake Nahuel Huapi, a deep oligotrophic lake in Northwest Patagonia (Argentina), occurs through the consumption of different prey. Therefore, in this work we analyzed total mercury [THg] and methylmercury [MeHg] concentrations in top predator fish and in their main prey to test whether their feeding habits influence [Hg]. Results indicate that [THg] and [MeHg] varied by foraging habitat and they increased with greater percentage of benthic diet and decreased with pelagic diet in Lake Nahuel Huapi. This is consistent with the fact that the native creole perch, a mostly benthivorous feeder, which shares the highest trophic level of the food web with introduced salmonids, had higher [THg] and [MeHg] than the more pelagic feeder rainbow trout and bentho-pelagic feeder brown trout. This differential THg and MeHg bioaccumulation observed in native and introduced fish provides evidence to the hypothesis that there are two main Hg transfer pathways from the base of the food web to top predators: a pelagic pathway where Hg is transferred from water, through plankton (with Hg in inorganic species mostly), forage fish to salmonids, and a benthic pathway, as Hg is transferred from the sediments (where Hg methylation occurs mostly), through crayfish (with higher [MeHg] than plankton), to native fish, leading to one fold higher [Hg].


Assuntos
Peixes , Cadeia Alimentar , Lagos/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Animais , Argentina , Monitoramento Ambiental
4.
Environ Pollut ; 223: 685-694, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196721

RESUMO

At the beginning of the 21st century, digital imaging technology replaced the traditional silver-halide film photography which had implications in Ag contamination. Lake Nahuel Huapi is a popular Patagonia tourist destination impacted by municipal silver (Ag) contamination from photographic processing facilities since 1990's. Silver concentrations in a dated sediment core from the lake bottom showed a 10-fold increase above background levels in the second half of the 20th century, then a decrease. This trend corresponds well with published annual global photography industry demand for Ag, which clearly shows the evolution and replacement of the traditional silver-halide film photography by digital imaging technology. There were significant decreases in Ag concentrations in sediments, mussels and fish across the lake between 1998 and 2011. Lower trophic organisms had variable whole-body Ag concentrations, from 0.2-2.6 µg g-1 dry weight (DW) in plankton to 0.02-3.1 µg g-1 DW in benthic macroinvertebrates. Hepatic Ag concentrations in crayfish, mussels and predatory fish were significantly elevated relative to muscle which often have Ag concentrations below the detection limit (0.01-0.05 µg g-1 DW). Trophodynamic analyses using δ15N and whole-body invertebrate and muscle Ag concentrations indicated food web biodilution trends. High sedimentation rates in conjunction with the reduction of silver waste products discharged to the lake, as a result of the change to digital image processing technologies, are resulting in unplanned but welcome remediation of the Ag contamination in Lake Nahuel Huapi.


Assuntos
Monitoramento Ambiental , Resíduos Industriais/análise , Lagos/química , Fotografação/métodos , Prata/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/química , Argentina , Biodegradação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/química , Invertebrados/química , Tamanho da Partícula , Plâncton/química
5.
Chemosphere ; 166: 163-173, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27697704

RESUMO

Despite located far from point sources of Hg pollution, high concentrations were recorded in plankton from the deep oligotrophic Lake Nahuel Huapi, located in North Patagonia. Native and introduced top predator fish with differing feeding habits are a valuable economic resource to the region. Hence, Hg and Se trophic interactions and pathways to these fish were assessed in the food web of this lake at three sites, using stable nitrogen and carbon isotopes. As expected based on the high THg in plankton, mercury did not biomagnify in the food web of Lake Nahuel Huapi, as most of the THg in plankton is in the inorganic form. As was observed in other aquatic systems, Se did not biomagnify either. When trophic pathways to top predator fish were analyzed, they showed that THg biomagnified in the food chains of native fish but biodiluted in the food chains of introduced salmonids. A more benthic diet, typical of native fish, resulted in higher [THg] bioaccumulation than a more pelagic or mixed diet, as in the case of introduced fish. Se:THg molar ratios were higher than 1 in all the fish species, indicating that Se might be offering a natural protection against Hg toxicity.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Lagos/química , Mercúrio/análise , Selênio/análise , Poluentes Químicos da Água/análise , Animais , Argentina , Isótopos de Carbono/química , Peixes , Mercúrio/química , Isótopos de Nitrogênio/química , Plâncton , Selênio/química , Poluentes Químicos da Água/química
6.
Environ Sci Pollut Res Int ; 23(18): 17995-8009, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27255321

RESUMO

Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.


Assuntos
Organismos Aquáticos/química , Metais Pesados/análise , Folhas de Planta/química , Salix/química , Oligoelementos/análise , Argentina , Ecossistema , Monitoramento Ambiental , Lagos , Mercúrio/análise , Árvores/química
7.
Chemosphere ; 144: 2277-89, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26598997

RESUMO

Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes.


Assuntos
Organismos Aquáticos/química , Arsênio/análise , Monitoramento Ambiental/métodos , Lagos/química , Erupções Vulcânicas , Poluentes Químicos da Água/análise , Animais , Argentina , Biota/efeitos dos fármacos , Cadeia Alimentar , Invertebrados/química , Percas/crescimento & desenvolvimento , Zooplâncton/química
8.
Ecotoxicology ; 23(7): 1184-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24844168

RESUMO

The incorporation and trophic transfer of total and methyl mercury (THg, MeHg) were examined in three size classes of plankton (10-53, 53-200, and >200 µm size range) and a small planktivorous fish, Galaxias maculatus, from the large multi-branched Lake Nahuel Huapi (North Patagonia, Argentina). Three sites representing a large range of lake benthic-pelagic structures (based on depth and shoreline characteristics) and precipitation regimes were sampled. Nitrogen and carbon stable isotopes (δ(15)N, δ(13)C) were analyzed to assess Hg trophodynamics. Selenium concentrations were determined together with THg in order to consider its potential effect on Hg trophodynamics. High THg concentrations (0.1-255 µg g(-1) dry weight (DW)) were measured in plankton, largely in inorganic form (MeHg: 3-29 ng g(-1) DW, 0.02-7% of THg, in the two larger size classes). A trend of increasing THg concentrations, varying in two to three orders of magnitude, with decreasing plankton size was associated with precipitation measured prior to each sampling event. Passive adsorption of dissolved Hg(2+) from wet deposition and runoff is considered to be the principal Hg uptake mechanism at the base of the pelagic food web. Despite the initially high THg uptake in the smaller plankton classes, the transfer to G. maculatus, and consequently to the entire food web, is likely limited due to low proportion of MeHg to THg in plankton. Furthermore, evidence of G. maculatus with benthic feeding habits having higher impact on MeHg trophic transfer compared to the same species with more pelagic (e.g., zooplankton) feeding habits, was observed. Although there is a high THg uptake in plankton, limited amounts are incorporated in the entire food web from the pelagic compartment.


Assuntos
Peixes , Cadeia Alimentar , Mercúrio/análise , Plâncton/química , Poluentes Químicos da Água/análise , Animais , Argentina , Isótopos de Carbono/análise , Monitoramento Ambiental , Lagos , Isótopos de Nitrogênio/análise , Selênio/análise
9.
Sci Total Environ ; 454-455: 170-80, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23542490

RESUMO

Food web trophodynamics of total mercury (THg) and selenium (Se) were assessed for the double-basined ultraoligotrophic system of Lake Moreno, Patagonia. Each basin has differing proportions of littoral and pelagic habitats, thereby providing an opportunity to assess the importance of habitat (e.g. food web structure or benthic MeHg production) in the transfer of Hg and Se to top trophic fish species. Pelagic plankton, analyzed in three size classes (10-53, 53-200, and >200 µm), had very high [THg], exceeding 200 µg g(-1) dry weight (DW) in the smallest, and a low ratio of MeHg to THg (0.1 to 3%). In contrast, [THg] in littoral macroinvertebrates showed lower values (0.3 to 1.8 µg g(-1) DW). Juvenile and small fish species feeding upon plankton had higher [THg] (0.2 to 8 µg g(-1) muscle DW) compared to large piscivore fish species (0.1 to 1.6 µg g(-1) muscle DW). Selenium concentrations exhibited a much narrower variation range than THg in the food web, varying from 0.5 to 2.7 µg g(-1) DW. Molar Se:Hg ratios exceeded 1 for the majority of organisms in both basins, with most ratios exceeding 10. Using stable nitrogen isotopes as indicator of trophic level, no significant correlations were found with [THg], [Se] or Se:Hg. The apparent lack of biomagnification trends was attributed to elevated [THg] in plankton in the inorganic form mostly, as well as the possibility of consistent Se supply reducing the biomagnification in the food web of the organic portion of THg.


Assuntos
Cadeia Alimentar , Mercúrio/metabolismo , Selênio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Organismos Aquáticos/metabolismo , Argentina , Isótopos de Carbono/metabolismo , Monitoramento Ambiental , Lagos , Espectrometria de Massas , Análise de Ativação de Nêutrons , Isótopos de Nitrogênio/metabolismo
10.
Sci Total Environ ; 427-428: 219-28, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22560246

RESUMO

We investigated the terrestrial influence on two chained deep ultraoligotrophic lakes of North Patagonia (Argentina) through the seasonal analysis of two pelagic allochthonous indicators: i) water color, as a proxy of allochthonous dissolved organic matter in lakes; and ii) the color to chlorophyll a ratio (Color:Chla), as an indicator of the relationship between allochthonous and autochthonous carbon pools. We also evaluated the potential transfer pathways of the allochthonous dissolved organic matter into the pelagic food webs of these deep lakes, including the natural zooplankton δ(13)C in the analysis. The dynamics of the allochthonous indicators were related to the precipitation regime, water level fluctuations, and hydrogeomorphic and catchment features of lakes Moreno East and Moreno West. The water color (absorbance at 440 nm) was extremely low (<0.28 m(-1)) in both lakes regardless of the season. However, precipitation and snowmelt regimes drove the increase and decrease of water color, respectively. A significant positive relationship between the zooplankton bulk δ(13)C with the water color would suggest an input of allochthonous organic carbon into the pelagic consumers. The incorporation of the dissolved allochthonous material into higher trophic levels is likely favored by the bacterivorous behavior of planktonic organisms, mixotrophic flagellates and ciliates, which dominate the pelagic food webs of these Patagonian lakes. Morphometric aspects, mainly the higher water residence time, led to lower values of allochthony in Moreno East compared to Moreno West, probably accentuated by its upper position in the lake chain. Overall, our results suggest that these allochthonous signals can bring insight into the magnitude of the interaction between terrestrial environments and lake ecosystems, even in extremely clear and ultraoligotrophic systems, such as the Andean Patagonian lakes.


Assuntos
Clorofila/análise , Meio Ambiente , Cadeia Alimentar , Lagos/química , Animais , Argentina , Isótopos de Carbono/análise , Clorofila A , Compostos Orgânicos/análise , Chuva , Estações do Ano , Neve , Zooplâncton/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...