Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Nutr ; : 1-8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38751244

RESUMO

A healthy diet is at the forefront of measures to prevent type 2 diabetes. Certain vegetable and fish oils, such as pine nut oil (PNO), have been demonstrated to ameliorate the adverse metabolic effects of a high-fat diet. The present study investigates the involvement of the free fatty acid receptors 1 (FFAR1) and 4 (FFAR4) in the chronic activity of hydrolysed PNO (hPNO) on high-fat diet-induced obesity and insulin resistance. Male C57BL/6J wild-type, FFAR1 knockout (-/-) and FFAR4-/- mice were placed on 60 % high-fat diet for 3 months. Mice were then dosed hPNO for 24 d, during which time body composition, energy intake and expenditure, glucose tolerance and fasting plasma insulin, leptin and adiponectin were measured. hPNO improved glucose tolerance and decreased plasma insulin in the wild-type and FFAR1-/- mice, but not the FFAR4-/- mice. hPNO also decreased high-fat diet-induced body weight gain and fat mass, whilst increasing energy expenditure and plasma adiponectin. None of these effects on energy balance were statistically significant in FFAR4-/- mice, but it was not shown that they were significantly less than in wild-type mice. In conclusion, chronic hPNO supplementation reduces the metabolically detrimental effects of high-fat diet on obesity and insulin resistance in a manner that is dependent on the presence of FFAR4.

2.
Front Endocrinol (Lausanne) ; 12: 698115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646232

RESUMO

Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.


Assuntos
Ingestão de Energia , Leptina/sangue , Leptina/farmacologia , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Magreza/genética , Tecido Adiposo/metabolismo , Animais , Composição Corporal/genética , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade da Espécie , Magreza/sangue
3.
PeerJ ; 8: e9811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904155

RESUMO

BACKGROUND: The insulin-sensitizing phytocannabinoid, Δ(9)-tetrahydrocannabivarin (THCV) can signal partly via G-protein coupled receptor-55 (GPR55 behaving as either an agonist or an antagonist depending on the assay). The cannabinoid receptor type 1 (CB1R) inverse agonist rimonabant is also a GPR55 agonist under some conditions. Previous studies have shown varied effects of deletion of GPR55 on energy balance and glucose homeostasis in mice. The contribution of signalling via GPR55 to the metabolic effects of THCV and rimonabant has been little studied. METHODS: In a preliminary experiment, energy balance and glucose homeostasis were studied in GPR55 knockout and wild-type mice fed on both standard chow (to 20 weeks of age) and high fat diets (from 6 to 15 weeks of age). In the main experiment, all mice were fed on the high fat diet (from 6 to 14 weeks of age). In addition to replicating the preliminary experiment, the effects of once daily administration of THCV (15 mg kg-1 po) and rimonabant (10 mg kg-1 po) were compared in the two genotypes. RESULTS: There was no effect of genotype on absolute body weight or weight gain, body composition measured by either dual-energy X-ray absorptiometry or Nuclear Magnetic Resonance (NMR), fat pad weights, food intake, energy expenditure, locomotor activity, glucose tolerance or insulin tolerance in mice fed on chow. When the mice were fed a high fat diet, there was again no effect of genotype on these various aspects of energy balance. However, in both experiments, glucose tolerance was worse in the knockout than the wild-type mice. Genotype did not affect insulin tolerance in either experiment. Weight loss in rimonabant- and THCV-treated mice was lower in knockout than in wild-type mice, but surprisingly there was no detectable effect of genotype on the effects of the drugs on any aspect of glucose homeostasis after taking into account the effect of genotype in vehicle-treated mice. CONCLUSIONS: Our two experiments differ from those reported by others in finding impaired glucose tolerance in GPR55 knockout mice in the absence of any effect on body weight, body composition, locomotor activity or energy expenditure. Nor could we detect any effect of genotype on insulin tolerance, so the possibility that GPR55 regulates glucose-stimulated insulin secretion merits further investigation. By contrast with the genotype effect in untreated mice, we found that THCV and rimonabant reduced weight gain, and this effect was in part mediated by GPR55.

4.
Int J Obes (Lond) ; 44(9): 1946-1957, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719434

RESUMO

BACKGROUND: Though it is well established that neonatal nutrition plays a major role in lifelong offspring health, the mechanisms underpinning this have not been well defined. Early postnatal accelerated growth resulting from maternal nutritional status is associated with increased appetite and body weight. Likewise, slow growth correlates with decreased appetite and body weight. Food consumption and food-seeking behaviour are directly modulated by central serotonergic (5-hydroxytryptamine, 5-HT) pathways. This study examined the effect of a rat maternal postnatal low protein (PLP) diet on 5-HT receptor mediated food intake in offspring. METHODS: Microarray analyses, in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR were used to identify genes up- or down-regulated in the arcuate nucleus of the hypothalamus (ARC) of 3-month-old male PLP rats. Third ventricle cannulation was used to identify altered sensitivity to serotonin receptor agonists and antagonists with respect to food intake. RESULTS: Male PLP offspring consumed less food and had lower growth rates up to 3 months of age compared with Control offspring from dams fed a normal diet. In total, 97 genes were upregulated including the 5-HT5A receptor (5-HT5AR) and 149 downregulated genes in PLP rats compared with Controls. The former obesity medication fenfluramine and the 5-HT receptor agonist 5-Carboxamidotryptamine (5-CT) significantly suppressed food intake in both groups, but the PLP offspring were more sensitive to d-fenfluramine and 5-CT compared with Controls. The effect of 5-CT was antagonized by the 5-HT5AR antagonist SB699551. 5-CT also reduced NPY-induced hyperphagia in both Control and PLP rats but was more effective in PLP offspring. CONCLUSIONS: Postnatal low protein programming of growth in rats enhances the central effects of serotonin on appetite by increasing hypothalamic 5-HT5AR expression and sensitivity. These findings provide insight into the possible mechanisms through which a maternal low protein diet during lactation programs reduced growth and appetite in offspring.


Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipotálamo/metabolismo , Receptores de Serotonina , Animais , Dieta , Feminino , Masculino , Obesidade/metabolismo , Ratos , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Transcriptoma/genética
5.
J Nutr Sci ; 9: e23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595967

RESUMO

Rodents with mutations in the leptin, or leptin receptor, genes have been extensively used to investigate the regulation of energy balance and the factors that underlie the development of obesity. The excess energy gain of these mutants has long been considered as being due in part to increased metabolic efficiency, consequent to reduced energy expenditure, but this view has recently been challenged. We argue, particularly though not exclusively, from data on ob/ob mice, that three lines of evidence support the proposition that reduced expenditure is important in the aetiology of obesity in leptin pathway mutants (irrespective of the genetic background): (i) milk intake is similar in suckling ob/ob and +/? mice; (ii) ob/ob mice deposit excess energy when pair-fed to the ad libitum food intake of lean siblings; (iii) in several studies mutant mice have been shown to exhibit a lower RMR 'per animal' at temperatures below thermoneutrality. When metabolic rate is expressed 'per unit body weight' (inappropriately, because of body composition differences), then it is invariably lower in the obese than the lean. It is important to differentiate the causes from the consequences of obesity. Hyperphagic, mature obese animals weighing 2-3 times their lean siblings may well have higher expenditure 'per animal', reflecting the costs of being larger and of enhanced obligatory diet-induced thermogenesis resulting from the increased food intake. This cannot, however, be used to inform the aetiology of their obesity.


Assuntos
Metabolismo Energético , Leptina/genética , Mutação , Obesidade/genética , Receptores para Leptina/genética , Animais , Composição Corporal , Ingestão de Alimentos , Hiperfagia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Leite , Termogênese
6.
PeerJ ; 6: e4166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333341

RESUMO

BACKGROUND: Salvia officinalis (sage) is a native plant to the Mediterranean region and has been used for a long time in traditional medicine for various diseases. We investigated possible anti-diabetic, anti-inflammatory and anti-obesity effects of sage methanol (MetOH) extract in a nutritional mouse model of obesity, inflammation and insulin resistance, as well as its effects on lipolysis and lipogenesis in 3T3-L1 cells. METHODS: Diet-induced obese (DIO) mice were treated for five weeks with sage methanol extract (100 and 400 mg kg-1/day bid), or rosiglitazone (3 mg kg-1/day bid), as a positive control. Energy expenditure, food intake, body weight, fat mass, liver glycogen and lipid content were evaluated. Blood glucose, and plasma levels of insulin, lipids leptin and pro- and anti-inflammatory cytokines were measured throughout the experiment. The effects of sage MetOH extract on lipolysis and lipogenesis were tested in vitro in 3T3-L1 cells. RESULTS: After two weeks of treatment, the lower dose of sage MetOH extract decreased blood glucose and plasma insulin levels during an oral glucose tolerance test (OGTT). An insulin tolerance test (ITT), performed at day 29 confirmed that sage improved insulin sensitivity. Groups treated with low dose sage and rosiglitazone showed very similar effects on OGTT and ITT. Sage also improved HOMA-IR, triglycerides and NEFA. Treatment with the low dose increased the plasma levels of the anti-inflammatory cytokines IL-2, IL-4 and IL-10 and reduced the plasma level of the pro-inflammatory cytokines IL-12, TNF-α, and KC/GRO. The GC analysis revealed the presence of two PPARs agonist in sage MetOH extract. In vitro, the extract reduced in a dose-related manner the accumulation of lipid droplets; however no effect on lipolysis was observed. CONCLUSIONS: Sage MetOH extract at low dose exhibits similar effects to rosiglitazone. It improves insulin sensitivity, inhibits lipogenesis in adipocytes and reduces inflammation as judged by plasma cytokines. Sage presents an alternative to pharmaceuticals for the treatment of diabetes and associated inflammation.

7.
Arch Physiol Biochem ; 122(2): 75-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26822470

RESUMO

OBJECTIVE: The potentially beneficial effects of pomegranate peel (PPE), flower (PFE) and seed oil (PSO) extracts, in comparison with rosiglitazone, on adiposity, lipid profile, glucose homoeostasis, as well as on the underlying inflammatory mechanisms, were examined in high-fat and high-sucrose (HF/HS) diet-induced obese (DIO) mice. MEASUREMENTS: Body weight, body fat, energy expenditure, food and liquid intake, blood glucose, and plasma levels of insulin, lipids and cytokines were measured. RESULTS: After two weeks, PSO (2 ml/kg/day) and rosiglitazone (3 mg/kg/day) had not improved glucose intolerance. After 4 weeks, both treatments significantly reduced fasting blood glucose and an insulin tolerance test showed that they also improved insulin sensitivity. Treatment with PPE, PFE and PSO, reduced the plasma levels of the pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), and PFE increased the level of the anti-inflammatory cytokine interleukin-10 (IL-10). CONCLUSION: PPE, PFE and PSO have anti-inflammatory properties. PSO also improved insulin sensitivity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Flores/química , Resistência à Insulina , Lythraceae/química , Obesidade/tratamento farmacológico , Óleos de Plantas/farmacologia , Sementes/química , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/análise , Homeostase/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Óleos de Plantas/uso terapêutico , Polifenóis/análise , Sacarose/efeitos adversos , Triglicerídeos/sangue , Triglicerídeos/metabolismo
8.
Dis Model Mech ; 9(4): 401-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769798

RESUMO

Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.


Assuntos
Crescimento e Desenvolvimento , Hipotálamo/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/efeitos dos fármacos , Proteínas Alimentares/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fenfluramina/administração & dosagem , Fenfluramina/farmacologia , Feto/efeitos dos fármacos , Feto/metabolismo , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipotálamo/anatomia & histologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/crescimento & desenvolvimento , Microdissecção e Captura a Laser , Masculino , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Ratos Wistar , Reprodutibilidade dos Testes , Serotonina/metabolismo , Fatores de Tempo , Triptofano/metabolismo
9.
Curr Obes Rep ; 4(4): 451-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346394

RESUMO

Obesity drugs have had a chequered history. In the recent past, only the low efficacy, pancreatic lipase inhibitor orlistat was available worldwide and it was little used. The 5HT2C agonist, lorcaserin, and two combinations of old drugs have been approved in the United States but not in Europe. The diabetes drug liraglutide has been approved in both the US and Europe and seems likely to be most widely accepted. In view of regulators' caution in approving obesity drugs, some (like beloranib) may initially be progressed for niche obesity markets. New drug targets have been identified in brown adipose tissue with the aim of not only activating thermogenesis but also increasing the capacity for thermogenesis in this tissue. Attempts are being made to match the efficacy of bariatric surgery by mimicking multiple gut hormones. Unapproved pharmacotherapies are tempting for some patients. Others remain optimistic about more conventional routes to pharmacotherapy.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Fármacos Antiobesidade/farmacologia , Depressores do Apetite/uso terapêutico , Benzazepinas/uso terapêutico , Cinamatos/uso terapêutico , Ensaios Clínicos como Assunto , Cicloexanos/uso terapêutico , Aprovação de Drogas , Combinação de Medicamentos , Compostos de Epóxi/uso terapêutico , Europa (Continente) , Humanos , Lactonas/uso terapêutico , Liraglutida/uso terapêutico , Terapia de Alvo Molecular/tendências , Orlistate , Sesquiterpenos/uso terapêutico , Termogênese/efeitos dos fármacos , Estados Unidos
10.
PeerJ ; 3: e753, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699203

RESUMO

The literature is unclear on whether the adipokine chemerin has pro- or anti-inflammatory properties or plays any role in the aetiology of type 2 diabetes or obesity. To address these questions, and in particular the potential of agonists or antagonists of the chemerin receptor CMKLR1 in the treatment of type 2 diabetes and obesity, we studied the metabolic phenotypes of both male and female, CMKLR1 knockout and heterozygote mice. We also investigated changes in plasma chemerin levels and chemerin gene mRNA content in adipose tissue in models of obesity and diabetes, and in response to fasting or administration of the insulin sensitizing drug rosiglitazone, which also has anti-inflammatory properties. The effects of murine chemerin and specific C-terminal peptides on glucose uptake in wild-type and CMKLR1 knockout adipocytes were investigated as a possible mechanism by which chemerin affects the blood glucose concentration. Both male and female CMKLR1 knockout and heterozygote mice displayed a mild tendency to obesity and impaired glucose homeostasis, but only when they were fed on a high-fat died, rather than a standard low-fat diet. Obesity and impaired glucose homeostasis did not occur concurrently, suggesting that obesity was not the sole cause of impaired glucose homeostasis. Picomolar concentrations of chemerin and its C15- and C19-terminal peptides stimulated glucose uptake in the presence of insulin by rat and mouse wild-type epididymal adipocytes, but not by murine CMKLR1 knockout adipocytes. The insulin concentration-response curve was shifted to the left in the presence of 40 pM chemerin or its C-15 terminal peptide. The plasma chemerin level was raised in diet-induced obesity and ob/ob but not db/db mice, and was reduced by fasting and, in ob/ob mice, by treatment with rosiglitazone. These findings suggest that an agonist of CMKLR1 is more likely than an antagonist to be of value in the treatment of type 2 diabetes and to have associated anti-obesity and anti-inflammatory activities. One mechanism by which an agonist of CMKLR1 might improve glucose homeostasis is by increasing insulin-stimulated glucose uptake by adipocytes.

11.
Arch Biochem Biophys ; 569: 26-31, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25660043

RESUMO

Studies in sarcolipin knockout mice have led to the suggestion that skeletal muscle sarcolipin plays a role in thermogenesis. The mechanism proposed is uncoupling of the sarcoplasmic reticulum calcium pump. However, in other work sarcolipin was not detected in mouse skeletal tissue. We have therefore measured sarcolipin levels in mouse skeletal muscle using semi-quantitative western blotting and synthetic mouse sarcolipin. Sarcolipin levels were so low that it is unlikely that knocking out sarcolipin would have a measurable effect on thermogenesis by SERCA. In addition, overexpression of neither wild type nor FLAG-tagged variants of mouse sarcolipin in transgenic mice had any major significant effects on body mass, energy expenditure, even when mice were fed on a high fat diet.


Assuntos
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolipídeos/genética , Proteolipídeos/metabolismo , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Dieta Hiperlipídica , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Termogênese/genética , Termogênese/fisiologia , Regulação para Cima
12.
PeerJ ; 2: e611, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25320679

RESUMO

We determined the effect of butyrate and other short-chain fatty acids (SCFA) on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM) increased the rate of lipolysis approximately 2-3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC) inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM) also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK) activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK) phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α) mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α- , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH) with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.

13.
PeerJ ; 2: e614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25320682

RESUMO

Kv1 channels are shaker-related potassium channels that influence insulin sensitivity. Kv1.3(-/-) mice are protected from diet-induced insulin resistance and some studies suggest that Kv1.3 inhibitors provide similar protection. However, it is unclear whether blockade of Kv1.3 in adipocytes or skeletal muscle increases glucose uptake. There is no evidence that the related channel Kv1.5 has any influence on insulin sensitivity and its expression in adipose tissue has not been reported. PAP-1 is a selective inhibitor of Kv1.3, with 23-fold, 32-fold and 125-fold lower potencies as an inhibitor of Kv1.5, Kv1.1 and Kv1.2 respectively. Soleus muscles from wild-type and genetically obese ob/ob mice were incubated with 2-deoxy[1-(14)C]-glucose for 45 min and formation of 2-deoxy[1-(14)C]-glucose-6-phosphate was measured. White adipocytes were incubated with D-[U-(14)C]-glucose for 1 h. TNFα and Il-6 secretion from white adipose tissue pieces were measured by enzyme-linked-immunoassay. In the absence of insulin, a high concentration (3 µM) of PAP-1 stimulated 2-deoxy[1-14C]-glucose uptake in soleus muscle of wild-type and obese mice by 30% and 40% respectively, and in adipocytes by 20% and 50% respectively. PAP-1 also stimulated glucose uptake by adipocytes at the lower concentration of 1 µM, but at 300 nM, which is still 150-fold higher than its EC50 value for inhibition of the Kv1.3 channel, it had no effect. In the presence of insulin, PAP-1 (3 µM) had a significant effect only in adipocytes from obese mice. PAP-1 (3 µM) reduced the secretion of TNFα by adipose tissue but had no effect on the secretion of IL-6. Expression of Kv1.1, Kv1.2, Kv1.3 and Kv1.5 was determined by RT-PCR. Kv1.3 and Kv1.5 mRNA were detected in liver, gastrocnemius muscle, soleus muscle and white adipose tissue from wild-type and ob/ob mice, except that Kv1.3 could not be detected in gastrocnemius muscle, nor Kv1.5 in liver, of wild-type mice. Expression of both genes was generally higher in liver and muscle of ob/ob mice compared to wild-type mice. Kv1.5 appeared to be expressed more highly than Kv1.3 in soleus muscle, adipose tissue and adipocytes of wild-type mice. Expression of Kv1.2 appeared to be similar to that of Kv1.3 in soleus muscle and adipose tissue, but Kv1.2 was undetectable in adipocytes. Kv1.1 could not be detected in soleus muscle, adipose tissue or adipocytes. We conclude that inhibition of Kv1 channels by PAP-1 stimulates glucose uptake by adipocytes and soleus muscle of wild-type and ob/ob mice, and reduces the secretion of TNFα by adipose tissue. However, these effects are more likely due to inhibition of Kv1.5 than to inhibition of Kv1.3 channels.

14.
Curr Obes Rep ; 3(4): 414-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26626918

RESUMO

Brown adipose tissue is specialised for the generation of heat by non-shivering mechanisms. In rodents, the tissue plays a role in energy balance and the development of obesity, as well as in thermoregulation. Studies using fluorodeoxyglucose positron emission tomography (FDG-PET), together with the identification of uncoupling protein-1, have provided definitive evidence that brown adipose tissue is present in adult humans. Brown fat activity is stimulated by cold exposure, declines with age and is inversely proportional to BMI. This has led to renewed interest in the tissue as a therapeutic target for the treatment of obesity. Brown adipose tissue also plays a role in glucose disposal and triglyceride clearance, implicating it in the metabolic syndrome. A potential mechanism for increasing thermogenesis is by the 'browning' of white adipose depots through the recruitment of the recently identified third type of adipocyte - the brite (or beige) fat cell.

15.
Naunyn Schmiedebergs Arch Pharmacol ; 386(9): 761-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23564017

RESUMO

The ß-adrenoceptor agonists BRL37344 and clenbuterol have opposite effects on glucose uptake in mouse soleus muscle, even though the ß2-adrenoceptor mediates both effects. Different agonists may direct the soleus muscle ß2-adrenoceptor to different signalling mechanisms. Soleus muscles were incubated with 2-deoxy[1-(14)C]-glucose, ß-adrenoceptor agonists, other modulators of cyclic AMP, and inhibitors of intracellular signalling. The adenylyl cyclase activator forskolin (1 µM), the phosphodiesterase inhibitor rolipram (10 µM) and BRL37344 (10, but not 100 or 1,000, nM) increased, whereas clenbuterol (100 nM) decreased, glucose uptake. Forskolin increased, whereas clenbuterol decreased, muscle cyclic AMP content. BRL37344 (10 nM) did not increase cyclic AMP. Nevertheless, protein kinase A (PKA) inhibitors prevented the stimulatory effect of BRL37344. Nanomolar but not micromolar concentrations of adrenaline stimulated glucose uptake. After preincubation of muscles with pertussis toxin (100 ng/ml), 100 nM clenbuterol, 0.1-10 µM adrenaline and 100 nM BRL37344 stimulated glucose uptake. Clenbuterol increased the proportion of phosphorylated to total ß2-adrenoceptor. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and the stress-activated mitogen-activated protein kinase (MAPK), but not of the classical MAPK pathway, prevented stimulation of glucose uptake by BRL37344. Elevation of the cyclic AMP content of soleus muscle stimulates glucose uptake. Clenbuterol, and high concentrations of adrenaline and BRL37344 direct the ß2-adrenoceptor partly to Gαi, possibly mediated by ß2-adrenoceptor phosphorylation. The stimulatory effect of 10 nM BRL37344 requires the activity of PKA, PI3K and p38 MAPK, consistent with BRL37344 directing the ß2-adrenoceptor to Gαs. Ligand-directed signalling may explain why ß2-adrenoceptor agonists have differing effects on glucose uptake in soleus muscle.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Clembuterol/farmacologia , Etanolaminas/farmacologia , Glucose/metabolismo , Músculo Esquelético/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/farmacologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Front Physiol ; 4: 64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23580228

RESUMO

Many compounds and genetic manipulations are claimed to confer resistance to obesity in rodents by raising energy expenditure. Examples taken from recent and older literature, demonstrate that such claims are often based on measurements of energy expenditure after body composition has changed, and depend on comparisons of energy expenditure divided by body weight. This is misleading because white adipose tissue has less influence than lean tissue on energy expenditure. Application of this approach to human data would suggest that human obesity is usually due to a low metabolic rate, which is not an accepted view. Increased energy expenditure per animal is a surer way of demonstrating thermogenesis, but even then it is important to know whether this is due to altered body composition (repartitioning), or increased locomotor activity rather than thermogenesis per se. Regression analysis offers other approaches. The thermogenic response to some compounds has a rapid onset and so cannot be due to altered body composition. These compounds usually mimic or activate the sympathetic nervous system. Thermogenesis occurs in, but may not be confined to, brown adipose tissue. It should not be assumed that weight loss in response to these treatments is due to thermogenesis unless there is a sustained increase in 24-h energy expenditure. Thyroid hormones and fibroblast growth factor 21 also raise energy expenditure before they affect body composition. Some treatments and genetic modifications alter the diurnal rhythm of energy expenditure. It is important to establish whether this is due to altered locomotor activity or efficiency of locomotion. There are no good examples of compounds that do not affect short-term energy expenditure but have a delayed effect. How and under what conditions a genetic modification or compound increases energy expenditure influences the decision on whether to seek drugs for the target or take a candidate drug into clinical studies.

17.
Br J Nutr ; 109(10): 1755-64, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23110765

RESUMO

SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in ß-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.


Assuntos
Tecido Adiposo/metabolismo , Composição Corporal/genética , Gorduras na Dieta/farmacologia , Metabolismo Energético/genética , Ácidos Graxos Voláteis/metabolismo , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Tecido Adiposo/efeitos dos fármacos , Animais , Bactérias/metabolismo , Compartimentos de Líquidos Corporais/efeitos dos fármacos , Compartimentos de Líquidos Corporais/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Intolerância à Glucose/genética , Coração/efeitos dos fármacos , Insulina/metabolismo , Secreção de Insulina , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Tamanho do Órgão , Receptores Acoplados a Proteínas G/metabolismo , Fatores Sexuais
18.
J Endocrinol ; 216(2): 157-68, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151357

RESUMO

Previous studies by Tisdale et al. have reported that zinc-α(2)-glycoprotein (ZAG (AZGP1)) reduces body fat content and improves glucose homeostasis and the plasma lipid profile in Aston (ob/ob) mice. It has been suggested that this might be mediated via agonism of ß(3)- and possibly ß(2)-adrenoceptors. We compared the effects of dosing recombinant human ZAG (100 µg, i.v.) and BRL35135 (0.5 mg/kg, i.p.), which is in rodents a 20-fold selective ß(3)- relative to ß(2)-adrenoceptor agonist, given once daily for 10 days to male C57Bl/6 Lep(ob)/Lep(ob) mice. ZAG, but not BRL35135, reduced food intake. BRL35135, but not ZAG, increased energy expenditure acutely and after sub-chronic administration. Only BRL35135 increased plasma concentrations of glycerol and non-esterified fatty acid. Sub-chronic treatment with both ZAG and BRL35135 reduced fasting blood glucose and improved glucose tolerance, but the plasma insulin concentration 30 min after administration of glucose was lowered only by BRL35135. Both ZAG and BRL35135 reduced ß(1)-adrenoceptor mRNA levels in white adipose tissue, but only BRL35135 reduced ß(2)-adrenoceptor mRNA. Both ZAG and BRL35135 reduced ß(1)-adrenoceptor mRNA levels in brown adipose tissue, but neither influenced ß(2)-adrenoceptor mRNA, and only BRL35135 increased ß(3)-adrenoceptor and uncoupling protein-1 (UCP1) mRNA levels in brown adipose tissue. Thus, ZAG and BRL35135 had similar effects on glycaemic control and shared some effects on ß-adrenoceptor gene expression in adipose tissue, but ZAG did not display the thermogenic effects of the ß-adrenoceptor agonist, nor did it increase ß(3)-adrenoceptor or UCP1 gene expression in brown adipose tissue. ZAG does not behave as a typical ß(3/2)-adrenoceptor agonist.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Fenetilaminas/farmacologia , Proteínas de Plasma Seminal/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1 , Glicoproteína Zn-alfa-2
19.
Nat Methods ; 9(1): 57-63, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22205519

RESUMO

We present a consolidated view of the complexity and challenges of designing studies for measurement of energy metabolism in mouse models, including a practical guide to the assessment of energy expenditure, energy intake and body composition and statistical analysis thereof. We hope this guide will facilitate comparisons across studies and minimize spurious interpretations of data. We recommend that division of energy expenditure data by either body weight or lean body weight and that presentation of group effects as histograms should be replaced by plotting individual data and analyzing both group and body-composition effects using analysis of covariance (ANCOVA).


Assuntos
Ingestão de Energia , Metabolismo Energético , Camundongos/fisiologia , Animais , Composição Corporal , Meio Ambiente , Abrigo para Animais , Camundongos Mutantes/genética , Obesidade/etiologia , Fenótipo
20.
Handb Exp Pharmacol ; (203): 201-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21484574

RESUMO

Exercise, together with a low-energy diet, is the first-line treatment for type 2 diabetes type 2 diabetes . Exercise improves insulin sensitivity insulin sensitivity by increasing the number or function of muscle mitochondria mitochondria and the capacity for aerobic metabolism, all of which are low in many insulin-resistant subjects. Cannabinoid 1-receptor antagonists and ß-adrenoceptor agonists improve insulin sensitivity in humans and promote fat oxidation in rodents independently of reduced food intake. Current drugs for the treatment of diabetes are not, however, noted for their ability to increase fat oxidation, although the thiazolidinediones increase the capacity for fat oxidation in skeletal muscle, whilst paradoxically increasing weight gain.There are a number of targets for anti-diabetic drugs that may improve insulin sensitivity insulin sensitivity by increasing the capacity for fat oxidation. Their mechanisms of action are linked, notably through AMP-activated protein kinase, adiponectin, and the sympathetic nervous system. If ligands for these targets have obvious acute thermogenic activity, it is often because they increase sympathetic activity. This promotes fuel mobilisation, as well as fuel oxidation. When thermogenesis thermogenesis is not obvious, researchers often argue that it has occurred by using the inappropriate device of treating animals for days or weeks until there is weight (mainly fat) loss and then expressing energy expenditure energy expenditure relative to body weight. In reality, thermogenesis may have occurred, but it is too small to detect, and this device distracts us from really appreciating why insulin sensitivity has improved. This is that by increasing fatty acid oxidation fatty acid oxidation more than fatty acid supply, drugs lower the concentrations of fatty acid metabolites that cause insulin resistance. Insulin sensitivity improves long before any anti-obesity effect can be detected.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/fisiopatologia , Hipoglicemiantes/farmacologia , Termogênese/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Desenho de Fármacos , Terapia por Exercício , Hormônios/fisiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/terapia , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...