Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 68(10): 2940-2947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33531296

RESUMO

OBJECTIVE: In biomanufacturing there is a need for quantitative methods to map cell viability and density inside 3D bioreactors to assess health and proliferation over time. Recently, noninvasive MRI readouts of cell density have been achieved. However, the ratio of live to dead cells was not varied. Herein we present an approach for measuring the viability of cells embedded in a hydrogel independently from cell density to map cell number and health. METHODS: Independent quantification of cell viability and density was achieved by calibrating the 1H magnetization transfer- (MT) and diffusion-weighted NMR signals to samples of known cell density and viability using a multivariate approach. Maps of cell viability and density were generated by weighting NMR images by these parameters post-calibration. RESULTS: Using this method, the limits of detection (LODs) of total cell density and viable cell density were found to be 3.88 ×108 cells · mL -1· Hz -1/2 and 2.36 ×109 viable cells · mL -1· Hz -1/2 respectively. CONCLUSION: This mapping technique provides a noninvasive means of visualizing cell viability and number density within optically opaque bioreactors. SIGNIFICANCE: We anticipate that such nondestructive readouts will provide valuable feedback for monitoring and controlling cell populations in bioreactors.


Assuntos
Hidrogéis , Imageamento por Ressonância Magnética , Contagem de Células , Sobrevivência Celular , Espectroscopia de Ressonância Magnética
2.
IEEE Trans Biomed Eng ; 66(3): 821-830, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30028689

RESUMO

OBJECTIVE: For tissue engineering, there is a need for quantitative methods to map cell density inside three-dimensional (3-D) bioreactors to assess tissue growth over time. The current cell mapping methods in 2-D cultures are based on optical microscopy. However, optical methods fail in 3-D due to increased opacity of the tissue. We present an approach for measuring the density of cells embedded in a hydrogel to generate quantitative maps of cell density in a living, 3-D tissue culture sample. METHODS: Quantification of cell density was obtained by calibrating the 1H T2, magnetization transfer (MT) and diffusion-weighted nuclear magnetic resonance (NMR) signals to samples of known cell density. Maps of cell density were generated by weighting NMR images by these parameters post-calibration. RESULTS: The highest sensitivity weighting arose from MT experiments, which yielded a limit of detection (LOD) of [Formula: see text] cells/mL/ √{Hz} in a 400 MHz (9.4 T) magnet. CONCLUSION: This mapping technique provides a noninvasive means of visualizing cell growth within optically opaque bioreactors. SIGNIFICANCE: We anticipate that such readouts of tissue culture growth will provide valuable feedback for controlled cell growth in bioreactors.


Assuntos
Contagem de Células/métodos , Hidrogéis/química , Imageamento Tridimensional/métodos , Espectroscopia de Ressonância Magnética/métodos , Reatores Biológicos , Células Cultivadas , Células HEK293 , Humanos , Saccharomyces cerevisiae/citologia , Processamento de Sinais Assistido por Computador , Engenharia Tecidual
3.
Nat Commun ; 8(1): 1620, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158473

RESUMO

Endothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress. Reduction of NOTCH1 destabilizes cellular junctions and triggers endothelial proliferation. NOTCH1 suppression results in changes in expression of genes involved in the regulation of intracellular calcium and proliferation, and preventing the increase of calcium signaling rescues the cell-cell junctional defects. Furthermore, loss of Notch1 in adult endothelium increases hypercholesterolemia-induced atherosclerosis in the descending aorta. We propose that NOTCH1 is atheroprotective and acts as a mechanosensor in adult arteries, where it integrates responses to laminar shear stress and regulates junctional integrity through modulation of calcium signaling.


Assuntos
Artérias/metabolismo , Mecanotransdução Celular , Receptor Notch1/metabolismo , Animais , Artérias/química , Cálcio/metabolismo , Células Endoteliais/química , Células Endoteliais/metabolismo , Endotélio Vascular/química , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch1/genética , Estresse Mecânico
4.
IEEE Trans Biomed Eng ; 64(1): 61-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955013

RESUMO

Tissue engineering (TE) approaches that involve seeding cells into predetermined tissue scaffolds ignore the complex environment where the material properties are spatially inhomogeneous and evolve over time. We present a new approach for controlling mechanical forces inside bioreactors, which enables spatiotemporal control of flow fields in real time. Our adaptive approach offers the flexibility of dialing-in arbitrary shear stress distributions and adjusting flow field patterns in a scaffold over time in response to cell growth without needing to alter scaffold structure. This is achieved with a multi-inlet bioreactor and a control algorithm with learning capabilities to dynamically solve the inverse problem of computing the inlet pressure distribution required over the multiple inlets to obtain a target flow field. The new method constitutes a new platform for studies of cellular responses to mechanical forces in complex environments and opens potentially transformative possibilities for TE.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Microfluídica/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células/fisiologia , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Mecanotransdução Celular/fisiologia , Microfluídica/métodos , Porosidade , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA