Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 14964-14972, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38737648

RESUMO

Mn-based high voltage cathodes, e.g., spinel LiMn2O4, are considered among the most promising materials for cost-effective, next generation energy storage. When paired with a Li metal anode, secondary batteries based on Li||LiMn2O4 in principle offer a straightforward, scalable approach for achieving cost-effective and high energy density storage demanded in applications. In practice, however, such batteries fail to live up to their promise. Rapid capacity fading caused by irreversible Mn dissolution at the cathode coupled with mossy/dendritic Li deposition at the anode limit their useful life. In this study, we report on the design of electrolytes based on a binary blend of two widely available salts, LiNO3 and LiTFSI, in ethylene carbonate (EC), which simultaneously overcome failure modes at both the cathode and anode of Li||LiMn2O4 batteries. The electrolyte design is motivated by a recent finding that compared with their linear counterparts (e.g., dimethyl carbonate), cyclic carbonates like EC dissolve considerably larger amount of LiNO3, which markedly improves anode reversibility. On the other hand, it is known that nonsolvolytic fluorine-containing Li salts like LiTFSI, lowers the electrolyte's susceptibility to solvolysis, which generates HF species responsible for Mn leaching at the cathode. In particular, we report instead that fluorine groups in the TFSI salt, promote formation of a favorable, fluorine-rich interphase on the Li metal anode. Electrochemical measurements show that the electrolytes enable remarkably improved charge-discharge cycling stability (>1000 charge-discharge cycles) of Li||LiMn2O4 batteries. In-depth atomic-resolution electron microscopy and X-ray/synchrotron diffraction experiments reveal the fundamental source of the improvements. The measurements show that crystallographic degradation of Mn-based cathodes (e.g., surface Mn leaching and bulk defect generation) upon cycling in conventional electrolytes is dramatically lowered in the LiNO3 + LiTFSI/EC electrolyte system. It is shown further that the reduction of Mn dissolution not only improves the cathode stability but improves the reversibility of the Li metal anode via a unique re-deposition mechanism in which Li and Mn co-deposit on the anode. Taken together, our findings show that the LiNO3 + LiTFSI/EC electrolyte system holds promise for accelerating progress towards practical Li||LiMn2O4 batteries because it stabilizes the dynamic interfaces required for long-term stability at both the Li anode and the LiMn2O4 cathode.

2.
JACS Au ; 4(4): 1365-1373, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665677

RESUMO

Controlling the morphological evolution of electrochemical crystal growth in battery anodes is of fundamental and practical importance, particularly towards realizing practical, high-energy batteries based on metal electrodes. Such batteries require highly reversible plating/stripping reactions at the anode to achieve a long cycle life. While conformal electrodeposition and electrode reversibility have been demonstrated in numerous proof-of-concept experiments featuring moderate to low areal capacity (≤3 mA h/cm2) electrodes, achieving high levels of reversibility is progressively challenging at the higher capacities (e.g., 10 mA h/cm2), required in applications. Nonplanar, "3D" electrodes composed of electrically conductive, porous substrates are conventionally thought to overcome trade-offs between reversibility and capacity because they hypothetically "host" the electrodeposits in an electronically conducting framework, providing redundant pathways for electron flow. Here, we challenge this hypothesis and instead show that a nonplanar substrate with moderate electrical conductivity (ideally, with an electrical conductance similar to the ionic conductance of the electrolyte) and composed of a passivated cathode-facing surface efficiently regulates electro-crystallization. In contrast, an architecture with a high intrinsic electrical conductivity or with a high electrical conductivity coating on the front surface results in dominantly out-of-plane growth, making the 3D architecture in effect function as a 2D substrate. Using Zn as an example, we demonstrate that interconnected carbon fiber substrates coated by SiO2 on the front and Cu on the back successfully ushers electroplated Zn metal into the 3D framework at a macroscopic length scale, maximizing use of the interior space of the framework. The effective integration of electrodeposits into the 3D framework also enables unprecedented plating/stripping reversibility >99.5% at high current density (e.g., 10 mA/cm2) and high areal capacities (e.g., 10 mA h/cm2). Used in full-cell Zn||NaV3O8 batteries with stringent N/P ratios of 3:1, the substrates are also shown to enhance cycle life.

3.
J Am Chem Soc ; 146(5): 3136-3146, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38276886

RESUMO

Aqueous Zn batteries have recently emerged as promising candidates for large-scale energy storage, driven by the need for a safe and cost-effective technology with sufficient energy density and readily accessible electrode materials. However, the energy density and cycle life of Zn batteries have been limited by inherent chemical, morphological, and mechanical instabilities at the electrode-electrolyte interface where uncontrolled reactions occur. To suppress the uncontrolled reactions, we designed a crystalline polymer interphase for both electrodes, which simultaneously promotes electrode reversibility via fast and selective Zn transport through the adaptive formation of ion channels. The interphase comprises an ultrathin layer of crystalline poly(1H,1H,2H,2H-perfluorodecyl acrylate), synthesized and applied as a conformal coating in a single step using initiated chemical vapor deposition (iCVD). Crystallinity is optimized to improve interphase stability and Zn-ion transport. The optimized interphase enables a cycle life of 9500 for Zn symmetric cells and over 11,000 for Zn-MnO2 full-cell batteries. We further demonstrate the generalizability of this interphase design using Cu and Li as examples, improving their stability and achieving reversible cycling in both. The iCVD method and molecular design unlock the potential of highly reversible and cost-effective aqueous batteries using earth-abundant Zn anode materials, pointing to grid-scale energy storage.

4.
Faraday Discuss ; 248(0): 305-317, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772414

RESUMO

Metal-air batteries including Li-air, Na-air, Al-air, and Zn-air, have received significant scientific and technological interest for at least the last three decades. The interest stems primarily from the fact that the electrochemically active material (O2) in the cathode can in principle be harvested from the surroundings. In practice, however, parasitic reactions with reactive components other than oxygen in dry air passivate the anode, limit cycling stability of air-sensitive (e.g., Li, Na, Al) and electrolyte-sensitive (e.g., Zn) anodes, in most cases obviating the energy-density benefits of harvesting O2 from ambient air. As a compromise, so-called metal-oxygen batteries in which pure O2 is used as the active cathode material have been extensively studied but are understood to be of little practical relevance because of the large infrastructure required to produce the pure O2 stream. Here, we report on the design of solid-ion conductive chemically inert metal interphases that simultaneously protect a metal anode from parasitic reactions with electrolyte components and which facilitate rapid interfacial ion transport. Interphases composed of indium (In) are reported to be of particular interest for protecting Li and Na anodes from passivation in air whereas interphases composed of Sn are shown to prevent chemical and electrochemical corrosion of Zn anodes in alkaline electrolytes. We report further that these protections enable so-called self-sufficient metal-air batteries capable of extended cycling stability in ambient air environments.

6.
Angew Chem Int Ed Engl ; 62(18): e202300823, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36861938

RESUMO

Polymers are known to adsorb spontaneously from liquid solutions in contact with high-energy substrates to form configurationally complex, but robust phases that often exhibit higher durability than might be expected from the individual physical bonds formed with the substrate. Rational control of the physical, chemical, and transport properties of such interphases has emerged as a fundamental opportunity for scientific and technological advances in energy storage technology but requires in-depth understanding of the conformation states and electrochemical effect of the adsorbed polymers. Here, we analyze the interfacial adsorption of oligomeric polyethylene glycol (PEG) chains of moderate sizes dissolved in protic and aprotic liquid electrolytes and find that there is an optimum polymer molecular weight of approximately 400 Da at which the highest columbic efficiency is achieved for both Zn and Li deposition. These findings point to a simple, versatile approach for extending the lifetime of batteries.

7.
Langmuir ; 39(1): 92-100, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36549330

RESUMO

Metal electrodeposition in batteries is fundamentally unstable and affected by different instabilities depending on operating conditions and electrolyte chemistry. Particularly, at high charging rates, a hydrodynamic instability loosely termed electroconvection sets in, which complicates all electrochemical processes by creating a nonuniform ion flux and preferential deposition at the electrode. Here, we isolate and study electroconvection by experimentally investigating how oligomer additives in liquid electrolytes interact with the hydrodynamic instability at a cation selective interface. From electrochemical measurements and direct visualization experiments, we find that electroconvection is delayed and suppressed at all voltages in the presence of oligomers. The underlying mechanism is revealed to involve formation of an oligomer ad-layer at the interface, which in response to perturbation is believed to exert an opposing body force on the surrounding fluid to preserve the ad-layer structure and in so doing suppresses electroconvection. Our results therefore reveal that in battery electrolytes without obvious sources of bulk elasticity, surface forces produced by adsorbed polymers can be used to advantage for suppressing instability.

8.
Sci Adv ; 8(44): eabq6321, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332032

RESUMO

How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate-neither too weak nor too strong-enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode-to-positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na.

9.
J Am Chem Soc ; 144(42): 19344-19352, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36112991

RESUMO

Aqueous alkaline zinc batteries are of scientific and technological interest because of the potential they offer for cost-effective and safe storage of electrical energy. Poor electrochemical reversibility and shape change of the Zn anode, propensity of Zn to become passivated by surface oxides and hydroxide films upon prolonged exposure to the electrolyte, and electroreduction of water are well-studied but remain unsolved challenges. Here, we create and study electrochemical and transport properties of precise, spatially tunable zwitterionic polymer interphases grown directly on Zn using an initiated-chemical vapor deposition polymerization methodology. In aqueous alkaline media, spatial gradients in composition─from the polymer-electrolyte interface to the solid-polymer interface─promote highly reversible redox reactions at high current density (20 mA cm-2) and high areal capacity (10 mAh cm-2). Via molecular dynamics and experimental analyses, we conclude that the interphases function by regulating the distribution and activity of interfacial water molecules, which simultaneously enables fast ion transport and suppression of surface passivation and the hydrogen evolution reaction. To illustrate the practical relevance of our findings, we study aqueous Zn||NiOOH and Zn||air batteries and observe that zwitterionic polymer interphases produce extended life at high currents and high areal capacity.

10.
Sci Adv ; 8(39): eabq4456, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36170361

RESUMO

Aqueous zinc flow batteries (AZFBs) with high power density and high areal capacity are attractive, both in terms of cost and safety. A number of fundamental challenges associated with out-of-plane growth and undesirable side reactions on the anode side, as well as sluggish reaction kinetics and active material loss on the cathode side, limit practical deployment of these batteries. We investigated artificial interphases created using a simple electrospray methodology as a strategy for addressing each of these challenges. The effectiveness of the electrospray interphases in full cell zinc-iodine flow batteries was evaluated and reported; it is possible to simultaneously achieve high power density [115 milliwatts per square centimeter (mW/cm2)] and high areal capacity [25 milliampere hour per square centimeter (mA·hour/cm2)]. Last, we extended it to aqueous zinc-bromine and zinc-vanadium flow batteries of contemporary interest. It is again found that high power density (255 and 260 mW/cm2, respectively) and high areal capacity (20 mA·hour/cm2) can be simultaneously achieved in AZFBs.

11.
Chem Rev ; 122(18): 14440-14470, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35950898

RESUMO

The vast of majority of battery electrode materials of contemporary interest are of a crystalline nature. Crystals are, by definition, anisotropic from an atomic-structure perspective. The inherent structural anisotropy may give rise to favored mesoscale orientations and anisotropic properties whether the material is in a rest state or subjected to an external stimulus. The overall perspective of this review is that intentional manipulation of crystallographic anisotropy of electrochemically active materials constitute an untapped parameter space in energy storage systems and thus provide new opportunities for materials innovations and design. To that end, we contend that crystallographically textured electrodes, as opposed to their textureless poly crystalline or single-crystalline analogs, are promising candidates for next-generation storage of electrical energy in rechargeable batteries relevant to commercial practice. This perspective is underpinned first by the fundamental─to a first approximation─uniaxial, rotation-invariant symmetry of electrochemical cells. On this basis, we show that a crystallographically textured electrode with the preferred orientation aligned out-of-plane toward the counter electrode represents an optimal strategy for utilization of the crystals' anisotropic properties. Detailed analyses of anisotropy of different types lead to a simple, but potentially useful general principle that "Pec//Pc" textures are optimal for metal anodes, and "Pec//Sc" textures are optimal for insertion-type electrodes.

12.
Small ; 18(37): e2203409, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35957538

RESUMO

As a promising pathway toward low-cost, long-duration energy storage, rechargeable sodium batteries are of increasing interest. Batteries that incorporate metallic sodium as anode promise a high theoretical specific capacity of 1166 mAh g-1 , and low reduction potential of -2.71 V. The high reactivity and poor electrochemical reversibility of sodium anodes render sodium metal anode (SMA) cells among the most challenging for practical implementation. Here, the failure mechanisms of Na anodes are investigated and the authors report that loss of morphological control is not the fundamental cause of failure. Rather, it is the inherently poor anchoring/root structure of electrodeposited Na to the electrode substrate that leads to poor reversibility and cell failure. Poorly anchored Na deposits are prone to break away from the current collector, producing orphaning and poor anode utilization. Thin metallic coatings in a range of chemistries are proposed and evaluated as SMA substrates. Based on thermodynamic and ion transport considerations, such substrates undergo reversible alloying reactions with Na and are hypothesized to promote good root growth-regardless of the morphology. Among the various options, Au stands out for its ability to support long Na anode lifetime and high reversibility (Coulombic Efficiency > 98%), for coating thicknesses in the range of 10-1000 nm. As a first step toward evaluating practical utility of the anodes, their performance in Na||SPAN cells with N:P ratio close to 1:1 is evaluated.

13.
Adv Mater ; 34(32): e2110333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35765212

RESUMO

Solid-state electrolytes (SSEs) formed inside an electrochemical cell by polymerization of a liquid precursor provide a promising strategy for overcoming problems with electrolyte wetting in solid-state batteries. Hybrid solid-state polymer electrolytes (HSPEs) created by in situ polymerization of a conventional liquid precursor containing electrochemically inert nanostructures are of particular interest because they offer a mechanism for selectively reinforcing or adding new functionalities to the electrolyte-removing the need for high degrees of polymerization. The synthesis, structure, chemical kinetics, ion-transport properties and electrochemical characteristics of HSPEs created by Al(OTf)3 -initiated polymerization of 1,3-dioxolane (DOL) containing hairy, nano-sized SiO2  particles are reported. Small-angle X-ray scattering reveals the particles are well-dispersed in liquid DOL. Strong interaction between poly(ethylene glycol) molecules tethered to the SiO2  particles and poly(DOL) lead to co-crystallization-anchoring the nanoparticles in their host It also enables polymerization-depolymerization processes in DOL to be studied and controlled. The utility of the in-situ-formed HSPE, is demonstrated first in Li|HSPE|Cu half cells, which manifest Coulombic efficiencies (CE) values approaching 99%. HSPEs are also demonstrated in solid-state lithium-sulfur-polyacrylonitrile (SPAN) composite full-cell batteries. The in-situ-formed Li|HSPE|SPAN cells show good cycling stability and thus provide a promising path toward all-solid-state batteries.

14.
Nat Commun ; 13(1): 2283, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477721

RESUMO

Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm-2; 2.6 mAh cm-2). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I2 and Zn||MnO2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm-2 and capacity of approximately 0.85 mAh cm-2. Finally, we demonstrate that Zn||I2-carbon pouch cells (9 cm2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm-2.

15.
Angew Chem Int Ed Engl ; 61(9): e202116214, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35014141

RESUMO

LiNO3 is a widely used salt-additive that markedly improves the stability of ether-based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3 without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state-of-the-art carbonate electrolytes with LiNO3 , which provides large improvements in batteries composed of thin lithium (50 µm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6 Mn0.2 Co0.2 O2 (2 mAh cm-2 , 0.5 C) and LiNi0.8 Mn0.1 Co0.1 O2 cathode (4 mAh cm-2 , 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg-1 ) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost-effective approach towards practical LMBs.

16.
Adv Mater ; 34(1): e2106867, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676922

RESUMO

Control of crystallography of metal electrodeposit films has recently emerged as a key to achieving long operating lifetimes in next-generation batteries. It is reported that the large crystallographic heterogeneity, e.g., broad orientational distribution, that appears characteristic of commercial metal foils, results in rough morphology upon plating/stripping. On this basis, an accumulative roll bonding (ARB) methodology-a severe plastic deformation process-is developed. Zn metal is used as a first example to interrogate the concept. It is demonstrated that the ARB process is highly effective in achieving uniform crystallographic control on macroscopic materials. After the ARB process, the Zn grains exhibit a strong (002) texture (i.e., [002]Zn //ND). The texture transitions from a classical bipolar pattern to a nonclassical unipolar pattern under large nominal strain eliminate the orientational heterogeneity of the foil. The strongly (002)-textured Zn remarkably improves the plating/stripping performance by nearly two orders of magnitude under practical conditions. The performance improvements are readily scaled to achieve pouch-type full batteries that deliver exceptional reversibility. The ARB process can, in principle, be applied to any metal chemistry to achieve similar crystallographic uniformity, provided the appropriate temperature and accumulated strains are employed. This concept is evaluated using commercial Li and Na foils, which, unlike Zn (HCP), are BCC crystals. The simple process for creating strong textures in both hexagonal and cubic metals and illustrating the critical role such built-in crystallography plays underscores opportunities for developing highly reversible thin metal anodes (e.g., hexagonal Zn, Mg, and cubic Li, Na, Ca, Al).

17.
Sci Adv ; 7(49): eabl3752, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851670

RESUMO

Secondary batteries based on earth-abundant, multivalent metals provide a promising path for high energy density and potentially low-cost electricity storage. Poor anodic reversibility caused by disordered metal crystallization during battery charging remains a fundamental, century-old challenge for the practical use of deep cycling metal batteries. We report that dynamic interphases formed by anisotropic nanostructures dispersed in a battery electrolyte provide a general method for achieving ordered assembly of metal electrodeposits and high anode reversibility. Interphases formed by anisotropic graphitic carbon nitride nanostructures in colloidal electrolytes are shown to promote formation of vertically aligned and spatially compact (~100% compactness) zinc electrodeposits with unprecedented, high levels of reversibility (>99.8%), even at quite high areal capacity (6 to 20 milliampere hour per square centimeter). It is also reported that the same concept enables uniform growth of compact magnesium and aluminum electrodeposits, defining a general pathway toward energy-dense metal batteries based on earth-abundant anode chemistries.

18.
ACS Nano ; 15(12): 19014-19025, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34898165

RESUMO

Coupled electron/ion transport is a defining characteristic of electrochemical processes, for example, battery charge/discharge. Analytical models that represent the complex transport and electrochemical processes in an electrode in terms of equivalent electrical circuits provide a simple, but successful framework for understanding the kinetics of these coupled transport phenomena. The premise of this review is that the nature of the time-dependent phase transitions in dynamic electrochemical environments serves as an important design parameter, orthogonal to the intrinsic mixed conducting properties of the active materials in battery electrodes. A growing body of literature suggests that such phase transitions can produce divergent extrinsic resistances in a circuit model (e.g., Re, describing electron transport from an active electrode material to the current collector of an electrode, and/or Rion, describing ion transport from a bulk electrolyte to the active material surface). It is found that extrinsic resistances of this type play a determinant role in both the electrochemical performance and long-term stability of most battery electrodes. Additionally, successful suppression of the tendency of extrinsic resistances to accumulate over time is a requirement for practical rechargeable batteries and an important target for rational design. We highlight the need for battery electrode and cell designs, which explicitly address the specific nature of the structural phase transition in active materials, and for advanced fabrication techniques that enable precise manipulations of matter at multiple length scales: (i) meso-to-macroscopic conductive frameworks that provide contiguous electronic/ion pathways; (ii) nanoscale uniform interphases formed on active materials; and (iii) molecular-level structures that promote fast electron and/or ion conduction and mechanical resilience.

19.
Sci Adv ; 7(45): eabi7633, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739316

RESUMO

Second life and recycling of retired automotive lithium-ion batteries (LIBs) have drawn growing attention, as large volumes of LIBs will retire in the coming decade. Here, we illustrate how battery chemistry, use, and recycling can influence the energy and environmental sustainability of LIBs. We find that LIBs with higher specific energy show better life cycle environmental performances, but their environmental benefits from second life application are less pronounced. Direct cathode recycling is found to be the most effective in reducing life cycle environmental impacts, while hydrometallurgical recycling provides limited sustainability benefits for high-performance LIBs. Battery design with less aluminum and alternative anode materials, such as silicon-based anode, could enable more sustainable LIB recycling. Compared to directly recycling LIBs after their electric vehicle use, carbon footprint and energy use of LIBs recycled after their second life can be reduced by 8 to 17% and 2 to 6%, respectively.

20.
Nat Commun ; 12(1): 6034, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654812

RESUMO

Lithium metal is a promising anode for energy-dense batteries but is hindered by poor reversibility caused by continuous chemical and electrochemical degradation. Here we find that by increasing the Li plating capacity to high values (e.g., 10-50 mAh cm-2), Li deposits undergo a morphological transition to produce dense structures, composed of large grains with dominantly (110)Li crystallographic facets. The resultant Li metal electrodes manifest fast kinetics for lithium stripping/plating processes with higher exchange current density, but simultaneously exhibit elevated electrochemical stability towards the electrolyte. Detailed analysis of these findings reveal that parasitic electrochemical reactions are the major reason for poor Li reversibility, and that the degradation rate from parasitic electroreduction of electrolyte components is about an order of magnitude faster than from chemical reactions. The high-capacity Li electrodes provide a straightforward strategy for interrogating the solid electrolyte interphase (SEI) on Li -with unprecedented, high signal to noise. We find that an inorganic rich SEI is formed and is primarily concentrated around the edges of lithium particles. Our findings provide straightforward, but powerful approaches for enhancing the reversibility of Li and for fundamental studies of the interphases formed in liquid and solid-state electrolytes using readily accessible analytical tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...