Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 4(3): 654-659, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30773882

RESUMO

Rapid diagnosis of an infectious disease outbreak in the field is critical for limiting the escalation of an outbreak into an epidemic. Devices suited to point-of-care (POC) diagnosis of cholera must not only demonstrate clinical laboratory levels of sensitivity and specificity but do so in a portable and low-cost manner, with a simplistic readout. We report work toward an on-chip electrochemical immunosensor for the detection of cholera toxin subunit B (CTX), based on a dendritic gold architecture biofunctionalized via poly(2-cyanoethyl)pyrrole (PCEPy). The dendritic electrode has an ∼18× greater surface area than a planar gold counterpart, per electrochemical measurements, allowing for a higher level of detection sensitivity. A layer of PCEPy polymer generated on the dendritic surface facilitated the performance of an electrochemical enzyme-linked immunosorbant assay (ELISA) for CTX on-chip, which demonstrated a detection limit of 1 ng mL-1, per a signal-to-noise ratio of 2.6. This was more sensitive than detection using a simple planar gold electrode (100 ng mL-1) and also matched the diagnostic standard optical ELISA, but on a miniaturized platform with electrical readout. The ability to meet POC demands makes biofunctionalized gold dendrites a promising architecture for on-chip detection of cholera.


Assuntos
Dendrímeros/química , Eletroquímica/instrumentação , Ouro/química , Nanoestruturas/química , Polímeros/química , Pirróis/química , Toxina da Cólera/análise , Toxina da Cólera/química , Eletrodos , Limite de Detecção , Nanofios/química
2.
Biosens Bioelectron ; 74: 406-10, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26164012

RESUMO

Sensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point of care (POC) technologies. Current methods do not allow for POC applications due to several limitations, including sophisticated instrumentation, high reagent consumption, limited multiplexing capability, and cost. Here, we report a nanocoaxial-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV) or square wave voltametry (SWV). The device architecture is composed of vertically-oriented, nanoscale coaxial electrodes in array format (~10(6) coaxes per square millimeter). The coax cores and outer shields serve as integrated working and counter electrodes, respectively, exhibiting a nanoscale separation gap corresponding to ~100 nm. Proof-of-concept was demonstrated for the detection of cholera toxin (CT). The linear dynamic range of detection was 10 ng/ml-1 µg/ml, and the limit of detection (LOD) was found to be 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications, which exhibited a linear dynamic range of 10 ng/ml-1 µg/ml and a LOD of 1 ng/ml. In addition to matching the detection profile of the standard ELISA, the nanocoaxial array provides a simple electrochemical readout and a miniaturized platform with multiplexing capabilities for the simultaneous detection of multiple biomarkers, giving the nanocoax a desirable advantage over the standard method towards POC applications.


Assuntos
Toxina da Cólera/análise , Condutometria/instrumentação , Ensaio de Imunoadsorção Enzimática/instrumentação , Microeletrodos , Nanotecnologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Org Lett ; 16(19): 5228-31, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25243507

RESUMO

A palladium-catalyzed asymmetric decarboxylative allylic alkylation of allyl 2,2-diphenylglycinate imines using (S,S)-f-binaphane as a chiral supporting ligand has been developed. This transformation allows for decarboxylative generation and enantioselective allylation of nonenolate α-imino (2-azaallyl anions) to afford α-aryl homoallylic imines.

4.
Anal Chem ; 85(21): 10040-4, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24090275

RESUMO

We have used a facile polymer imprint process to fabricate a three-dimensional electrochemical nanosensor, the sensitivity of which is two decades higher than that of planar controls. The device is composed of an array of vertically oriented nanoscale coaxial electrodes, with the coax cores and shields serving as integrated working and counter electrodes, respectively, each with a nanoscale separation gap (coax annulus width). Arrays of ~10(6) devices per square millimeter were prepared with different gaps, with smaller gaps yielding higher sensitivity. A coax-based sensor with a 100 nm gap was found to have sensitivity 90 times greater than that of a planar sensor control, which had conventional millimeter-scale electrode gap spacing. We suggest that this enhancement is due to the combination of rapid diffusion of molecules between the closely spaced electrodes and the large number of nanoscale electrochemical cells operating in parallel, both of which enhance current per unit surface area compared to planar or other nanostructured devices.


Assuntos
Técnicas Eletroquímicas/instrumentação , Nanotecnologia , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...