Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 284: 131335, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34328081

RESUMO

The processes controlling antibiotics fate in ecosystems are poorly understood, yet their presence can inhibit bacterial growth and induce the development of bacterial resistance. Sulfamethoxazole (SMX) is one of the most frequently detected sulfonamides in natural environments due to its low metabolism and molecular properties. This work presents pioneering results on SMX biodegradation and impact in high altitude soils (Bolivian Altiplano), allowing a better understanding of the persistence, spread and impact of this antibiotic at the global watershed scale. Our results showed significant dissipation of SMX in relation to its adsorption, hydrolysis and biotransformation. However, biodegradation appears to be lower in these mountain soils than in lowland soils as widely described in the literature. The half-life of SMX ranges from 12 to 346 days in non-sterile soils. In one soil, no biotic degradation was observed, indicating a likely high persistence. Biodegradation was related to OC content and to proximity to urban activities. Regarding the study of the impacts of SMX, the DGGE results were less sensitive than the sequencing. In general, SMX strongly changes the structure and composition of the studied soils at high altitudes, which is comparable to the observations of other authors in lowland soils. The phylum Actinobacter showed high sensitivity to SMX. In contrast, the abundance of ɣ-proteobacteria remained almost unchanged. Soil contamination with SMX did not lead to the development of the studied resistance genes (sul1 and sul2) in soils where they were absent at the beginning of the experiment. Thus, the presence of SMX resistance genes seems to be related to irrigation with wastewater carrying the studied resistance genes.


Assuntos
Microbiota , Sulfametoxazol , Altitude , Antibacterianos , Bolívia , Solo
2.
Environ Int ; 130: 104905, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31234002

RESUMO

Sulfamethoxazole (SMX) is one of the antibiotics most commonly detected in aquatic and terrestrial environments and is still widely used, especially in low income countries. SMX is assumed to be highly mobile in soils due to its intrinsic molecular properties. Ten soils with contrasting properties and representative of the catchment soil types and land uses were collected throughout the watershed, which undergoes very rapid urban development. SMX displacement experiments were carried out in repacked columns of the 10 soils to explore SMX reactive transfer (mobility and reactivity) in order to assess the contamination risk of water resources in the context of the Bolivian Altiplano. Relevant sorption processes were identified by modelling (HYDRUS-1D) considering different sorption concepts. SMX mobility was best simulated when considering irreversible sorption as well as instantaneous and rate-limited reversible sorption, depending on the soil type. SMX mobility appeared lower in soils located upstream of the watershed (organic and acidic soils - Regosol) in relation with a higher adsorption capacity compared to the soils located downstream (lower organic carbon content - Cambisol). By combining soil column experiments and soil profiles description, this study suggests that SMX can be classified as a moderately to highly mobile compound in the studied watershed, depending principally on soil properties such as pH and OC. Potential risks of surface and groundwater pollution by SMX were thus identified in the lower part of the studied catchment, threatening Lake Titicaca water quality.


Assuntos
Água Doce/química , Medição de Risco/métodos , Poluentes do Solo/análise , Sulfametoxazol/análise , Poluição da Água , Poluição da Água/análise , Poluição da Água/prevenção & controle , Recursos Hídricos
4.
Sci Total Environ ; 576: 671-682, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810754

RESUMO

An increasing number of studies pointed out the ubiquitous presence of medical residues in surface and ground water as well as in soil compartments. Not only antibiotics can be found in the environment but also their transformation products about which little information is generally available. The development of bacterial resistance to antibiotics is particularly worrying as it can lead to sanitary and health problems. Studies about the dissemination of antibiotics and associated resistances in the Bolivian Altiplano are scarce. We provide baseline information on the occurrence of Sulfamethoxazole (SMX) and Trimethoprim (TMP) antibiotics as well as on the most common human SMX transformation products (TP) and on the occurrence of sulfonamide resistance genes. The studied water and soil compartments presented high levels of antibiotic pollution. This situation was shown to be mainly linked with uncontrolled discharges of treated and untreated wastewaters, resulting on the presence of antibiotics in the Titicaca Lake. SMX TPs were detected in surface waters and on soil sampled next to the wastewater treatment plant (WWTP). SMX resistance genes sulI and sulII were widely detected in the basin hydrological network, even in areas unpolluted with antibiotics. Mechanisms of co-selection of antibiotic- and metal- resistance may be involved in the prevalence of ARG's in pristine areas with no anthropogenic activity and free of antibiotic pollution.


Assuntos
Antibacterianos/análise , Genes Bacterianos , Lagos/química , Poluentes Químicos da Água/análise , Bolívia , Farmacorresistência Bacteriana/genética , Sulfametoxazol/análise , Trimetoprima/análise , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA