Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6721, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795302

RESUMO

Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Proteína de Transporte de Acila/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , Ativação Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Ligação Proteica , Proteínas Repressoras/genética
2.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585666

RESUMO

Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.


Assuntos
Ligação Competitiva , Proteínas Cromossômicas não Histona/química , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/química , Escherichia coli/química
3.
Nucleic Acids Res ; 47(18): 9696-9707, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400115

RESUMO

Ubiquitous Structural Maintenance of Chromosomes (SMC) complexes use a proteinaceous ring-shaped architecture to organize and individualize chromosomes, thereby facilitating chromosome segregation. They utilize cycles of adenosine triphosphate (ATP) binding and hydrolysis to transport themselves rapidly with respect to DNA, a process requiring protein conformational changes and multiple DNA contact sites. By analysing changes in the architecture and stoichiometry of the Escherichia coli SMC complex, MukBEF, as a function of nucleotide binding to MukB and subsequent ATP hydrolysis, we demonstrate directly the formation of dimer of MukBEF dimer complexes, dependent on dimeric MukF kleisin. Using truncated and full length MukB, in combination with MukEF, we show that engagement of the MukB ATPase heads on nucleotide binding directs the formation of dimers of heads-engaged dimer complexes. Complex formation requires functional interactions between the C- and N-terminal domains of MukF with the MukB head and neck, respectively, and MukE, which organizes the complexes by stabilizing binding of MukB heads to MukF. In the absence of head engagement, a MukF dimer bound by MukE forms complexes containing only a dimer of MukB. Finally, we demonstrate that cells expressing MukBEF complexes in which MukF is monomeric are Muk-, with the complexes failing to associate with chromosomes.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Escherichia coli/genética , Proteínas Repressoras/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/química , Cromossomos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Proteínas Repressoras/química
4.
Elife ; 72018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323635

RESUMO

The Escherichia coli SMC complex, MukBEF, acts in chromosome segregation. MukBEF shares the distinctive architecture of other SMC complexes, with one prominent difference; unlike other kleisins, MukF forms dimers through its N-terminal domain. We show that a 4-helix bundle adjacent to the MukF dimerisation domain interacts functionally with the MukB coiled-coiled 'neck' adjacent to the ATPase head. We propose that this interaction leads to an asymmetric tripartite complex, as in other SMC complexes. Since MukF dimerisation is preserved during this interaction, MukF directs the formation of dimer of dimer MukBEF complexes, observed previously in vivo. The MukF N- and C-terminal domains stimulate MukB ATPase independently and additively. We demonstrate that impairment of the MukF interaction with MukB in vivo leads to ATP hydrolysis-dependent release of MukBEF complexes from chromosomes.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Escherichia coli/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Multimerização Proteica
5.
Sci Rep ; 6: 33357, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708355

RESUMO

Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.


Assuntos
Proteínas de Escherichia coli/genética , Integrases/genética , Proteínas de Membrana/genética , Recombinação Genética , Sequência de Bases/genética , Cromossomos Bacterianos/genética , Escherichia coli
6.
Nat Commun ; 7: 10466, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818444

RESUMO

The Escherichia coli SMC complex, MukBEF, forms clusters of molecules that interact with the decatenase topisomerase IV and which are normally associated with the chromosome replication origin region (ori). Here we demonstrate an additional ATP-hydrolysis-dependent association of MukBEF with the replication termination region (ter). Consistent with this, MukBEF interacts with MatP, which binds matS sites in ter. MatP displaces wild-type MukBEF complexes from ter, thereby facilitating their association with ori, and limiting the availability of topoisomerase IV (TopoIV) at ter. Displacement of MukBEF is impaired when MukB ATP hydrolysis is compromised and when MatP is absent, leading to a stable association of ter and MukBEF. Impairing the TopoIV-MukBEF interaction delays sister ter segregation in cells lacking MatP. We propose that the interplay between MukBEF and MatP directs chromosome organization in relation to MukBEF clusters and associated topisomerase IV, thereby ensuring timely chromosome unlinking and segregation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , DNA Topoisomerase IV/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas Repressoras/metabolismo , Divisão Celular , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA Topoisomerase IV/genética , DNA Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Origem de Replicação , Proteínas Repressoras/genética
7.
Proc Natl Acad Sci U S A ; 112(37): E5133-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324908

RESUMO

The FtsK dsDNA translocase functions in bacterial chromosome unlinking by activating XerCD-dif recombination in the replication terminus region. To analyze FtsK assembly and translocation, and the subsequent activation of XerCD-dif recombination, we extended the tethered fluorophore motion technique, using two spectrally distinct fluorophores to monitor two effective lengths along the same tethered DNA molecule. We observed that FtsK assembled stepwise on DNA into a single hexamer, and began translocation rapidly (∼ 0.25 s). Without extruding DNA loops, single FtsK hexamers approached XerCD-dif and resided there for ∼ 0.5 s irrespective of whether XerCD-dif was synapsed or unsynapsed. FtsK then dissociated, rather than reversing. Infrequently, FtsK activated XerCD-dif recombination when it encountered a preformed synaptic complex, and dissociated before the completion of recombination, consistent with each FtsK-XerCD-dif encounter activating only one round of recombination.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Integrases/metabolismo , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/química , Sequência de Bases , Cromossomos Bacterianos/metabolismo , DNA/química , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Funções Verossimilhança , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Distribuição Normal , Ligação Proteica , Transporte Proteico , Recombinação Genética
8.
Mol Cell ; 54(5): 832-43, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24768536

RESUMO

In physiological settings, DNA translocases will encounter DNA-bound proteins, which must be dislodged or bypassed to allow continued translocation. FtsK is a bacterial translocase that promotes chromosome dimer resolution and decatenation by activating XerCD-dif recombination. To better understand how translocases act in crowded environments, we used single-molecule imaging to visualize FtsK in real time as it collided with other proteins. We show that FtsK can push, evict, and even bypass DNA-bound proteins. The primary factor dictating the outcome of collisions was the relative affinity of the proteins for their specific binding sites. Importantly, protein-protein interactions between FtsK and XerD help prevent removal of XerCD from DNA by promoting rapid reversal of FtsK. Finally, we demonstrate that RecBCD always overwhelms FtsK when these two motor proteins collide while traveling along the same DNA molecule, indicating that RecBCD is capable of exerting a much greater force than FtsK when translocating along DNA.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas de Membrana/química , Bacteriófago lambda/genética , Sítios de Ligação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Viral/química , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transporte Proteico
9.
Proc Natl Acad Sci U S A ; 110(43): 17302-7, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101525

RESUMO

Three single-molecule techniques have been used simultaneously and in tandem to track the formation in vitro of single XerCD-dif recombination complexes. We observed the arrival of the FtsK translocase at individual preformed synaptic complexes and demonstrated the conformational change that occurs during their activation. We then followed the reaction intermediate transitions as Holliday junctions formed through catalysis by XerD, isomerized, and were converted by XerC to reaction products, which then dissociated. These observations, along with the calculated intermediate lifetimes, inform the reaction mechanism, which plays a key role in chromosome unlinking in most bacteria with circular chromosomes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Integrases/metabolismo , Proteínas de Membrana/metabolismo , Recombinação Genética , Algoritmos , Sequência de Bases , Biocatálise , Pareamento Cromossômico , Cromossomos Bacterianos/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Cruciforme/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Integrases/química , Integrases/genética , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência/métodos , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Especificidade por Substrato
10.
Proc Natl Acad Sci U S A ; 109(51): 20871-6, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23184986

RESUMO

Site-specific recombination plays key roles in microbe biology and is exploited extensively to manipulate the genomes of higher organisms. Cre is a well studied site-specific recombinase, responsible for establishment and maintenance of the P1 bacteriophage genome in bacteria. During recombination, Cre forms a synaptic complex between two 34-bp DNA sequences called loxP after which a pair of strand exchanges forms a Holliday junction (HJ) intermediate; HJ isomerization then allows a second pair of strand exchanges and thus formation of the final recombinant product. Despite extensive work on the Cre-loxP system, many of its mechanisms have remained unclear, mainly due to the transient nature of complexes formed and the ensemble averaging inherent to most biochemical work. Here, we address these limitations by introducing tethered fluorophore motion (TFM), a method that monitors large-scale DNA motions through reports of the diffusional freedom of a single fluorophore. We combine TFM with Förster resonance energy transfer (FRET) and simultaneously observe both large- and small-scale conformational changes within single DNA molecules. Using TFM-FRET, we observed individual recombination reactions in real time and analyzed their kinetics. Recombination was initiated predominantly by exchange of the "bottom-strands" of the DNA substrate. In productive complexes we used FRET distributions to infer rapid isomerization of the HJ intermediates and that a rate-limiting step occurs after this isomerization. We also observed two nonproductive synaptic complexes, one of which was structurally distinct from conformations in crystals. After recombination, the product synaptic complex was extremely stable and refractory to subsequent rounds of recombination.


Assuntos
Bioquímica/métodos , Fluorescência , Integrases/metabolismo , Sítios de Ligação , DNA/química , DNA Nucleotidiltransferases/genética , DNA Cruciforme , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Cinética , Modelos Químicos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Recombinação Genética
11.
Biochem Soc Trans ; 38(2): 395-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298190

RESUMO

Escherichia coli FtsK is a septum-located DNA translocase that co-ordinates the late stages of cytokinesis and chromosome segregation. Relatives of FtsK are present in most bacteria; in Bacillus subtilis, the FtsK orthologue, SpoIIIE, transfers the majority of a chromosome into the forespore during sporulation. DNA translocase activity is contained within a ~ 512-amino-acid C-terminal domain, which is divided into three subdomains: alpha, beta and gamma. alpha and beta comprise the translocation motor, and gamma is a regulatory domain that interacts with DNA and with the XerD recombinase. In vitro rates of translocation of ~ 5 kb.s(-1) have been measured for both FtsK and SpoIIIE, whereas, in vivo, SpoIIIE has a comparable rate of translocation. Translocation by both of these proteins is not only rapid, but also directed by DNA sequence. This directionality requires interaction of the gamma subdomain with specific 8 bp DNA asymmetric sequences that are oriented co-directionally with replication direction of the bacterial chromosome. The gamma subdomain also interacts with the XerCD site-specific recombinase to activate chromosome unlinking by recombination at the chromosomal dif site. In the present paper, the properties in vivo and in vitro of FtsK and its relatives are discussed in relation to the biological functions of these remarkable enzymes.


Assuntos
DNA Nucleotidiltransferases/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Proteínas de Membrana/fisiologia , Segregação de Cromossomos/genética , Citocinese/genética , DNA Nucleotidiltransferases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Homologia de Sequência
12.
Nucleic Acids Res ; 38(1): 72-81, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19854947

RESUMO

Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKgamma regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Integrases/metabolismo , Proteínas de Membrana/metabolismo , Recombinação Genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , DNA/metabolismo , Clivagem do DNA , Proteínas de Escherichia coli/química , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Transporte Proteico
13.
Mol Microbiol ; 71(4): 1031-42, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170870

RESUMO

The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK gamma regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif, located within ter. The frequency of chromosome dimer formation is approximately 15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of approximately 70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre-loxP recombination replaces XerCD-dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter.


Assuntos
Segregação de Cromossomos , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana/metabolismo , Divisão Celular , Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo , Dimerização , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética
14.
Nat Struct Mol Biol ; 13(11): 965-72, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17057717

RESUMO

The bacterial septum-located DNA translocase FtsK coordinates circular chromosome segregation with cell division. Rapid translocation of DNA by FtsK is directed by 8-base-pair DNA motifs (KOPS), so that newly replicated termini are brought together at the developing septum, thereby facilitating completion of chromosome segregation. Translocase functions reside in three domains, alpha, beta and gamma. FtsKalphabeta are necessary and sufficient for ATP hydrolysis-dependent DNA translocation, which is modulated by FtsKgamma through its interaction with KOPS. By solving the FtsKgamma structure by NMR, we show that gamma is a winged-helix domain. NMR chemical shift mapping localizes the DNA-binding site on the gamma domain. Mutated proteins with substitutions in the FtsKgamma DNA-recognition helix are impaired in DNA binding and KOPS recognition, yet remain competent in DNA translocation and XerCD-dif site-specific recombination, which facilitates the late stages of chromosome segregation.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/química , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos/metabolismo , Replicação do DNA , DNA Bacteriano/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia
15.
Mol Microbiol ; 59(6): 1754-66, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16553881

RESUMO

Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.


Assuntos
Proteínas de Bactérias/química , Segregação de Cromossomos , Proteínas de Escherichia coli/química , Integrases/química , Proteínas de Membrana/química , Mapeamento de Interação de Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Haemophilus influenzae/enzimologia , Haemophilus influenzae/genética , Integrases/genética , Integrases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Recombinação Genética
16.
J Mol Biol ; 330(1): 15-27, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12818199

RESUMO

The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Integrases , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , DNA/síntese química , DNA/química , DNA/metabolismo , DNA Nucleotidiltransferases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinases , Recombinação Genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA