Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 14: 1125984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234176

RESUMO

Respiratory disorders caused by allergy have been associated to bronchiolar inflammation leading to life-threatening airway narrowing. However, whether airway allergy causes alveolar dysfunction contributing to the pathology of allergic asthma remains unaddressed. To explore whether airway allergy causes alveolar dysfunction that might contribute to the pathology of allergic asthma, alveolar structural and functional alterations were analyzed during house dust mite (HDM)-induced airway allergy in mice, by flow cytometry, light and electron microscopy, monocyte transfer experiments, assessment of intra-alveolarly-located cells, analysis of alveolar macrophage regeneration in Cx3cr1 cre:R26-yfp chimeras, analysis of surfactant-associated proteins, and study of lung surfactant biophysical properties by captive bubble surfactometry. Our results demonstrate that HDM-induced airway allergic reactions caused severe alveolar dysfunction, leading to alveolar macrophage death, pneumocyte hypertrophy and surfactant dysfunction. SP-B/C proteins were reduced in allergic lung surfactant, that displayed a reduced efficiency to form surface-active films, increasing the risk of atelectasis. Original alveolar macrophages were replaced by monocyte-derived alveolar macrophages, that persisted at least two months after the resolution of allergy. Monocyte to alveolar macrophage transition occurred through an intermediate stage of pre-alveolar macrophage and was paralleled with translocation into the alveolar space, Siglec-F upregulation, and downregulation of CX3CR1. These data support that the severe respiratory disorders caused by asthmatic reactions not only result from bronchiolar inflammation, but additionally from alveolar dysfunction compromising an efficient gas exchange.


Assuntos
Asma , Hipersensibilidade , Surfactantes Pulmonares , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Hipersensibilidade/complicações , Asma/metabolismo , Inflamação/complicações , Tensoativos
3.
STAR Protoc ; 4(1): 102079, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36825810

RESUMO

Resident peritoneal macrophages (resMØs) are crucial for repairing peritoneal injuries and controlling infections by forming mesothelium-bound resMØ-aggregates in the peritoneal wall and omentum. Here we present a protocol to analyze these structures in mouse models of peritoneal inflammation. We describe the dissection, fixation, immunofluorescent staining, and mounting of whole peritoneal wall and omentum samples and subsequent confocal microscopy imaging of resMØ-aggregates. We also detail the steps to isolate resMØ-aggregates for additional studies, including flow cytometry and electron-microscopy-based analysis. For complete details on the use and execution of this protocol, please refer to Vega-Pérez et al. (2021).1.


Assuntos
Inflamação , Animais , Camundongos , Imunofluorescência , Modelos Animais de Doenças , Epitélio , Microscopia Confocal
4.
Adv Sci (Weinh) ; 10(11): e2206617, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658699

RESUMO

Large peritoneal macrophages (LPMs) are long-lived, tissue-resident macrophages, formed during embryonic life, developmentally and functionally confined to the peritoneal cavity. LPMs provide the first line of defense against life-threatening pathologies of the peritoneal cavity, such as abdominal sepsis, peritoneal metastatic tumor growth, or peritoneal injuries caused by trauma, or abdominal surgery. Apart from their primary phagocytic function, reminiscent of primitive defense mechanisms sustained by coelomocytes in the coelomic cavity of invertebrates, LPMs fulfill an essential homeostatic function by achieving an efficient clearance of apoptotic, that is crucial for the maintenance of self-tolerance. Research performed over the last few years, in mice, has unveiled the mechanisms by which LPMs fulfill a crucial role in repairing peritoneal injuries and controlling microbial and parasitic infections, reflecting that the GATA6-driven LPM transcriptional program can be modulated by extracellular signals associated with pathological conditions. In contrast, recent experimental evidence supports that peritoneal tumors can subvert LPM metabolism and function, leading to the acquisition of a tumor-promoting potential. The remarkable functional plasticity of LPMs can be nevertheless exploited to revert tumor-induced LPM protumor potential, providing the basis for the development of novel immunotherapeutic approaches against peritoneal tumor metastasis based on macrophage reprogramming.


Assuntos
Macrófagos Peritoneais , Macrófagos , Animais , Camundongos , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , Homeostase
5.
Cell Rep ; 38(1): 110184, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986349

RESUMO

MV130 is an inactivated polybacterial mucosal vaccine that confers protection to patients against recurrent respiratory infections, including those of viral etiology. However, its mechanism of action remains poorly understood. Here, we find that intranasal prophylaxis with MV130 modulates the lung immune landscape and provides long-term heterologous protection against viral respiratory infections in mice. Intranasal administration of MV130 provides protection against systemic candidiasis in wild-type and Rag1-deficient mice lacking functional lymphocytes, indicative of innate immune-mediated protection. Moreover, pharmacological inhibition of trained immunity with metformin abrogates the protection conferred by MV130 against influenza A virus respiratory infection. MV130 induces reprogramming of both mouse bone marrow progenitor cells and in vitro human monocytes, promoting an enhanced cytokine production that relies on a metabolic shift. Our results unveil that the mucosal administration of a fully inactivated bacterial vaccine provides protection against viral infections by a mechanism associated with the induction of trained immunity.


Assuntos
Vacinas Bacterianas/imunologia , Imunidade nas Mucosas/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Mucosa Respiratória/imunologia , Infecções Respiratórias/prevenção & controle , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Candidíase/prevenção & controle , Linhagem Celular , Chlorocebus aethiops , Citocinas/biossíntese , Humanos , Vírus da Influenza A/imunologia , Células L , Pulmão/imunologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
6.
Immunity ; 54(11): 2578-2594.e5, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34717795

RESUMO

Peritoneal immune cells reside unanchored within the peritoneal fluid in homeostasis. Here, we examined the mechanisms that control bacterial infection in the peritoneum using a mouse model of abdominal sepsis following intraperitoneal Escherichia coli infection. Whole-mount immunofluorescence and confocal microscopy of the peritoneal wall and omentum revealed that large peritoneal macrophages (LPMs) rapidly cleared bacteria and adhered to the mesothelium, forming multilayered cellular aggregates composed by sequentially recruited LPMs, B1 cells, neutrophils, and monocyte-derived cells (moCs). The formation of resident macrophage aggregates (resMφ-aggregates) required LPMs and thrombin-dependent fibrin polymerization. E. coli infection triggered LPM pyroptosis and release of inflammatory mediators. Resolution of these potentially inflammatory aggregates required LPM-mediated recruitment of moCs, which were essential for fibrinolysis-mediated resMφ-aggregate disaggregation and the prevention of peritoneal overt inflammation. Thus, resMφ-aggregates provide a physical scaffold that enables the efficient control of peritoneal infection, with implications for antimicrobial immunity in other body cavities, such as the pleural cavity or brain ventricles.


Assuntos
Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Cavidade Peritoneal/microbiologia , Animais , Biomarcadores , Microambiente Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Peritonite/etiologia , Peritonite/metabolismo , Peritonite/patologia
7.
J Immunol ; 201(1): 41-52, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743313

RESUMO

IVIg is an approved therapy for immunodeficiency and for several autoimmune and inflammatory diseases. However, the molecular basis for the IVIg anti-inflammatory activity remains to be fully explained and cannot be extrapolated from studies on animal models of disease. We now report that IVIg impairs the generation of human monocyte-derived anti-inflammatory macrophages by inducing JNK activation and activin A production and limits proinflammatory macrophage differentiation by inhibiting GM-CSF-driven STAT5 activation. In vivo, IVIg provokes a rapid increase in peripheral blood activin A, CCL2, and IL-6 levels, an effect that can be recapitulated in vitro on human monocytes. On differentiating monocytes, IVIg promotes the acquisition of altered transcriptional and cytokine profiles, reduces TLR expression and signaling, and upregulates negative regulators of TLR-initiated intracellular signaling. In line with these effects, in vivo IVIg infusion induces a state tolerant toward subsequent stimuli that results in reduced inflammatory cytokine production after LPS challenge in human peripheral blood and significant protection from LPS-induced death in mice. Therefore, IVIg conditions human macrophages toward the acquisition of a state of cross-tolerance against inflammatory stimuli, an effect that correlates with the net anti-inflammatory action of IVIg in vivo.


Assuntos
Anti-Inflamatórios/imunologia , Tolerância Imunológica/imunologia , Imunoglobulinas Intravenosas/imunologia , Imunoglobulinas Intravenosas/farmacologia , Macrófagos/imunologia , Fator de Transcrição STAT5/metabolismo , Ativinas/sangue , Animais , Células Cultivadas , Quimiocina CCL2/sangue , Ativação Enzimática , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/imunologia , Interleucina-6/sangue , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Monócitos/citologia , Monócitos/imunologia
8.
EMBO Mol Med ; 10(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29661910

RESUMO

Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper-inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ-null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Proteína Quinase 12 Ativada por Mitógeno/imunologia , Proteína Quinase 13 Ativada por Mitógeno/imunologia , Células Mieloides/imunologia , Animais , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 12 Ativada por Mitógeno/deficiência , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/deficiência , Proteína Quinase 13 Ativada por Mitógeno/genética , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
Mol Cell Biol ; 38(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507185

RESUMO

The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR-/-) LDLR-/- mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.


Assuntos
Quimiotaxia/fisiologia , Células Dendríticas/fisiologia , Receptores X do Fígado/fisiologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Células Cultivadas , Células Dendríticas/citologia , Inflamação , Metabolismo dos Lipídeos , Receptores X do Fígado/genética , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais
10.
Front Immunol ; 9: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434585

RESUMO

GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro, macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages (in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A. These results suggest that activin A, through enhancement of PPARγ expression, help macrophages to switch from a proinflammatory to an anti-inflammatory polarization state, thus contributing to limit tissue damage and restore homeostasis.


Assuntos
Ativinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/imunologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/imunologia , PPAR gama/metabolismo , Animais , Diferenciação Celular/imunologia , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamação/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Interferência de RNA , RNA Interferente Pequeno/genética
11.
PLoS Pathog ; 13(9): e1006632, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922415

RESUMO

Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.


Assuntos
Candidíase/metabolismo , Glucose/metabolismo , Imunidade Inata/imunologia , Lectinas Tipo C/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Animais , Glicólise/efeitos dos fármacos , Humanos , Camundongos
12.
Immunity ; 46(6): 1059-1072.e4, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636955

RESUMO

Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6Chigh monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6Chigh monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Imunoterapia/métodos , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Antígenos Ly/metabolismo , Candidíase/terapia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Imunoterapia/tendências , Interferon gama/metabolismo , Rim/imunologia , Ativação Linfocitária , Camundongos , Monócitos/microbiologia , Ativação de Neutrófilo , Baço/imunologia
13.
J Control Release ; 214: 12-22, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26188153

RESUMO

Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1ß, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design.


Assuntos
Adjuvantes Imunológicos/química , Antígenos/administração & dosagem , Ácido Ascórbico/análogos & derivados , Fator 88 de Diferenciação Mieloide/metabolismo , Vacinas/administração & dosagem , Animais , Ácido Ascórbico/química , Preparações de Ação Retardada , Humanos , Inflamassomos/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucinas/biossíntese , Leucócitos/efeitos dos fármacos , Cristais Líquidos , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Ovalbumina/imunologia , Receptor Toll-Like 9/biossíntese , Receptor Toll-Like 9/genética , Receptores Toll-Like/biossíntese
14.
J Immunol ; 194(12): 6090-101, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25972472

RESUMO

Despite recent evidence on the involvement of CD81 in pathogen binding and Ag presentation by dendritic cells (DCs), the molecular mechanism of how CD81 regulates immunity during infection remains to be elucidated. To investigate the role of CD81 in the regulation of defense mechanisms against microbial infections, we have used the Listeria monocytogenes infection model to explore the impact of CD81 deficiency in the innate and adaptive immune response against this pathogenic bacteria. We show that CD81(-/-) mice are less susceptible than wild-type mice to systemic Listeria infection, which correlates with increased numbers of inflammatory monocytes and DCs in CD81(-/-) spleens, the main subsets controlling early bacterial burden. Additionally, our data reveal that CD81 inhibits Rac/STAT-1 activation, leading to a negative regulation of the production of TNF-α and NO by inflammatory DCs and the activation of cytotoxic T cells by splenic CD8α(+) DCs. In conclusion, this study demonstrates that CD81-Rac interaction exerts an important regulatory role on the innate and adaptive immunity against bacterial infection and suggests a role for CD81 in the development of novel therapeutic targets during infectious diseases.


Assuntos
Mediadores da Inflamação/metabolismo , Listeriose/imunologia , Listeriose/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Tetraspanina 28/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Listeria/imunologia , Listeriose/genética , Ativação Linfocitária , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Fagocitose , Fosforilação , Ligação Proteica , Receptor de Interferon alfa e beta/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Tetraspanina 28/genética , Fator de Necrose Tumoral alfa/biossíntese
15.
J Immunol ; 192(8): 3858-67, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639350

RESUMO

The CCL2 chemokine mediates monocyte egress from bone marrow and recruitment into inflamed tissues through interaction with the CCR2 chemokine receptor, and its expression is upregulated by proinflammatory cytokines. Analysis of the gene expression profile in GM-CSF- and M-CSF-polarized macrophages revealed that a high CCL2 expression characterizes macrophages generated under the influence of M-CSF, whereas CCR2 is expressed only by GM-CSF-polarized macrophages. Analysis of the factors responsible for this differential expression identified activin A as a critical factor controlling the expression of the CCL2/CCR2 pair in macrophages, as activin A increased CCR2 expression but inhibited the acquisition of CCL2 expression by M-CSF-polarized macrophages. CCL2 and CCR2 were found to determine the extent of macrophage polarization because CCL2 enhances the LPS-induced production of IL-10, whereas CCL2 blockade leads to enhanced expression of M1 polarization-associated genes and cytokines, and diminished expression of M2-associated markers in human macrophages. Along the same line, Ccr2-deficient bone marrow-derived murine macrophages displayed an M1-skewed polarization profile at the transcriptomic level and exhibited a significantly higher expression of proinflammatory cytokines (TNF-α, IL-6) in response to LPS. Therefore, the CCL2-CCR2 axis regulates macrophage polarization by influencing the expression of functionally relevant and polarization-associated genes and downmodulating proinflammatory cytokine production.


Assuntos
Quimiocina CCL2/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ativinas/farmacologia , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transcriptoma
16.
J Allergy Clin Immunol ; 132(6): 1409-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24139608

RESUMO

BACKGROUND: Whereas recent research has characterized the mechanism by which dendritic cells (DCs) induce T(H)1/T(H)17 responses, the functional specialization enabling DCs to polarize T(H)2 responses remains undefined. Because IL-4 is essential during T(H)2 responses not only by acting on CD4(+) T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during T(H)2 responses. OBJECTIVE: We sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of T(H)2 responses. METHODS: Monocyte-derived DCs (moDCs) conditioned by IL-4 during their differentiation (IL-4-conditioned moDCs [IL-4-moDCs]) were analyzed for T(H)1-polarizing/inflammatory cytokine production in response to Toll-like receptor stimulation. The acetylation level of the promoters of the genes encoding these cytokines was analyzed by using chromatin immunoprecipitation. Gene expression profiling of IL-4-moDCs was defined by using mouse genome microarrays. IL-4-moDCs were tested for their capacity to induce house dust mite-mediated allergic reactions. RESULTS: Our data suggest that IL-4 inhibits T(H)1-polarizing/inflammatory cytokine gene expression on IL-4-moDCs through the deacetylation of the promoters of these genes, leading to their transcriptional repression. Microarray analyses confirmed that IL-4 upregulated T(H)2-related genes as eosinophil-associated ribonucleases, eosinophil/basophil chemokines, and M2 genes. IL-4 licensed moDCs for the induction of T(H)2 responses, causing house dust mite-mediated allergic airway inflammation. CONCLUSION: This study describes a new role for IL-4 by demonstrating that moDCs are conditioned by IL-4 for the induction of T(H)2 responses by blocking T(H)1-polarizing/inflammatory cytokine production through histone hypoacetylation and upregulating T(H)2-related genes.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Interleucina-4/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Acetilação , Animais , Antígenos de Dermatophagoides/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-4/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Regiões Promotoras Genéticas/genética , Pyroglyphidae
17.
Immunity ; 38(6): 1176-86, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23770228

RESUMO

Type I interferon (IFN) is crucial during infection through its antiviral properties and by coordinating the immunocompetent cells involved in antiviral or antibacterial immunity. Type I IFN (IFN-α and IFN-ß) is produced after virus or bacteria recognition by cytosolic receptors or membrane-bound TLR receptors following the activation of the transcription factors IRF3 or IRF7. IFN-ß production after fungal infection was recently reported, although the underlying mechanism remains controversial. Here we describe that IFN-ß production by dendritic cells (DCs) induced by Candida albicans is largely dependent on Dectin-1- and Dectin-2-mediated signaling. Dectin-1-induced IFN-ß production required the tyrosine kinase Syk and the transcription factor IRF5. Type I IFN receptor-deficient mice had a lower survival after C. albicans infection, paralleled by defective renal neutrophil infiltration. IFN-ß production by renal infiltrating leukocytes was severely reduced in C. albicans-infected mice with Syk-deficient DCs. These data indicate that Dectin-induced IFN-ß production by renal DCs is crucial for defense against C. albicans infection.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Células Dendríticas/imunologia , Interferon beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Movimento Celular/genética , Células Cultivadas , Células Dendríticas/microbiologia , Fatores Reguladores de Interferon/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/imunologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética , Quinase Syk
18.
Proc Natl Acad Sci U S A ; 109(28): 11200-5, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733747

RESUMO

On the basis mainly of pharmacological experiments, the p38α MAP kinase isoform has been established as an important regulator of immune and inflammatory responses. However, the role of the related p38γ and p38δ kinases has remained unclear. Here, we show that deletion of p38γ and p38δ impaired the innate immune response to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) ligand, by blocking the extracellular signal-regulated kinase 1/2 (ERK1/2) activation in macrophages and dendritic cells. p38γ and p38δ were necessary to maintain steady-state levels of tumor progression locus 2 (TPL2), the MKK kinase that mediates ERK1/2 activation after TLR4 stimulation. TNFα, IL-1ß, and IL-10 production were reduced in LPS-stimulated macrophages from p38γ/δ-null mice, whereas IL-12 and IFNß production increased, in accordance with the known effects of TPL2/ERK1/2 signaling on the induction of these cytokines. Furthermore, p38γ/δ-deficient mice were less sensitive than controls to LPS-induced septic shock, showing lower TNFα and IL-1ß levels after challenge. Together, our results establish p38γ and p38δ as key components in innate immune responses.


Assuntos
Citocinas/metabolismo , Regulação da Expressão Gênica , Proteína Quinase 13 Ativada por Mitógeno/química , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/química , Animais , Bovinos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Deleção de Genes , Humanos , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Isoformas de Proteínas , Choque Séptico/metabolismo
19.
Eur J Immunol ; 42(8): 2042-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22585535

RESUMO

Monocytes have the capacity to differentiate into macrophages or dendritic cells (DCs) after extravasation into lymphoid and nonlymphoid tissues. They have thus been consequently considered as precursors, but not effector cells, recirculating exclusively through the blood. In this report, we demonstrate for the first time that, after subcutaneous injection, activated monocytes migrate through the lymphatics from the dermis into the draining lymph nodes by a CCR7-dependent mechanism. LPS-activated monocytes were less efficient than DCs in stimulating CD4(+) T cells, but unexpectedly, they were highly efficient in inducing antigen-specific CD8(+) T-cell proliferation by cross-presentation, both in vitro and in vivo. Interestingly, CD8(+) T cells stimulated in vivo by activated monocytes expressed a high level of CD62L, suggesting that they had undergone an unconventional activation process. In conclusion, our data strongly support the concept that monocytes can behave not only as precursor cells for macrophages and DCs, but also as effector cells with the capacity to migrate from the periphery to the lymph nodes through the lymph and to cross-present antigens to CD8(+) T cells. These results suggest that monocytes can play an important role in the induction and regulation of CD4(+) and CD8(+) T-cell responses.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Monócitos/imunologia , Animais , Antígenos/imunologia , Antígenos Ly , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Dendríticas/imunologia , Feminino , Selectina L/biossíntese , Lipopolissacarídeos/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7/metabolismo
20.
PLoS One ; 7(12): e52976, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300838

RESUMO

Cervical cancer is caused by persistent high-risk human papillomavirus (HR-HPV) infection and represents the second most frequent gynecological malignancy in the world. The HPV-16 type accounts for up to 55% of all cervical cancers. The HPV-16 oncoproteins E6 and E7 are necessary for induction and maintenance of malignant transformation and represent tumor-specific antigens for targeted cytotoxic T lymphocyte-mediated immunotherapy. Therapeutic cancer vaccines have become a challenging area of oncology research in recent decades. Among current cancer immunotherapy strategies, virus-like particle (VLP)-based vaccines have emerged as a potent and safe approach. We generated a vaccine (VLP-E7) incorporating a long C-terminal fragment of HPV-16 E7 protein into the infectious bursal disease virus VLP and tested its therapeutic potential in HLA-A2 humanized transgenic mice grafted with TC1/A2 tumor cells. We performed a series of tumor challenge experiments demonstrating a strong immune response against already-formed tumors (complete eradication). Remarkably, therapeutic efficacy was obtained with a single dose without adjuvant and against two injections of tumor cells, indicating a potent and long-lasting immune response.


Assuntos
Papillomavirus Humano 16/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/uso terapêutico , Neoplasias do Colo do Útero/terapia , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Animais , Feminino , Camundongos , Camundongos Transgênicos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...