Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771331

RESUMO

We report here an experimental-computational study of hydrated TiO2 anatase nanoparticles interacting with glycine, where we obtain quantitative agreement of the measured adsorption free energies. Ab initio simulations are performed within the tight binding and density functional theory in combination with enhanced free-energy sampling techniques, which exploit the thermodynamic integration of the unbiased mean forces collected on-the-fly along the molecular dynamics trajectories. The experiments adopt a new and efficient setup for electrochemical impedance spectroscopy measurements based on portable screen-printed gold electrodes, which allows fast and in situ signal assessment. The measured adsorption free energy is -30 kJ/mol (both from experiment and calculation), with preferential interaction of the charged NH3+ group which strongly adsorbs on the TiO2 bridging oxygens. This highlights the importance of the terminal amino groups in the adsorption mechanism of amino acids on hydrated metal oxides. The excellent agreement between computation and experiment for this amino acid opens the doors to the exploration of the interaction free energies for other moderately complex bionano systems.

2.
Analyst ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712737

RESUMO

In the orthopaedic surgery field, the use of medical implants to treat a patient's bone fracture is nowadays a common practice, nevertheless, it is associated with possible cases of infection. The consequent hardware infection can lead to implant failure and systemic infections, with prolonged hospitalization, time-consuming rehabilitation treatments, and extended antibiotic therapy. Hardware infections are strictly related to bacterial adhesion to the implant, leading to infection occurrence and consequent pH decreasing from physiological level to acid pH. Here, we demonstrate the new strategy to use an orthopaedic implant functionalized with iridium oxide film as the working electrode for the potentiometric monitoring of pH in hardware infection diagnosis. A functional investigation was focused on selecting the implant material, namely titanium, titanium alloy, and stainless steel, and the component, namely screws and implants. After selecting the titanium-based implant as the working electrode and a silver wire as the reference electrode in the final configuration of the smart sensing orthopaedic implant, a calibration curve was performed in standard solutions. An equation equal to y = (0.76 ± 0.02) - (0.068 ± 0.002) x, R2 = 0.996, was obtained in the pH range of 4-8. Subsequently, hysteresis, interference, matrix effect, recovery study, and storage stability were investigated to test the overall performance of the sensing device, demonstrating the tremendous potential of electrochemical sensors to deliver the next generation of smart orthopaedic implants.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38640070

RESUMO

The last decade has been incredibly fruitful in proving the multifunctionality of paper for delivering innovative electrochemical (bio)sensors. The paper material exhibits unprecedented versatility to deal with complex liquid matrices and facilitate analytical detection in aerosol and solid phases. Such remarkable capabilities are feasible by exploiting the intrinsic features of paper, including porosity, capillary forces, and its easy modification, which allow for the fine designing of a paper device. In this review, we shed light on the most relevant paper-based electrochemical (bio)sensors published in the literature so far to identify the smart functional roles that paper can play to bridge the gap between academic research and real-world applications in the biomedical, environmental, agrifood, and security fields. Our analysis aims to highlight how paper's multifarious properties can be artfully harnessed for breaking the boundaries of the most classical applications of electrochemical (bio)sensors.

4.
Nat Nanotechnol ; 19(3): 271-272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366226
5.
Bioelectrochemistry ; 156: 108619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128441

RESUMO

Herein, we developed a new waste solution-free paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva, by combining vertical and lateral flow. In detail, the device was constituted of a reservoir containing all reagents for the construction of the immunological chain onto the magnetic beads and a lateral flow holder which contained a polyester-based electrode, a magnet, and an adsorbent pad. The measurement was carried out by adding the saliva sample into the reservoir, followed by the addition of this solution in the hole present in the lateral flow holder. The successive additions of washing buffer and TMB solution in the lateral flow holder allowed the detection of N protein in saliva in the range of 0.06 to 4 µg/mL with a detection limit equal to 30 ng/mL. The analysis of several saliva samples with the sensing tool and the reference method, demonstrated the effectiveness of this device, being able to identify positive patients with high values of CT e.g. 35. This new configuration paves the way for the realization of any magnetic beads-based immunosystem without waste solution production, enlarging the application of paper-based devices.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Saliva , SARS-CoV-2 , Imunoensaio/métodos , Técnicas Biossensoriais/métodos , Smartphone , COVID-19/diagnóstico , Limite de Detecção , Técnicas Eletroquímicas/métodos , Eletrodos
6.
Int J Biol Macromol ; 253(Pt 8): 127409, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37848114

RESUMO

The use of paper as a smart support in the field of electrochemical sensors has been largely improved over the last 15 years, driven by its outstanding features such as foldability and porosity, which enable the design of reagent and equipment-free multi-analysis devices. Furthermore, the easy surface engineering of paper has been used to immobilize different bioreceptors, through physical adsorption, covalent bonding, and electrochemical polymerization, boosting the fine customization of the analytical performances of paper-based biosensors. In this review, we focused on the strategies to engineer the surface of the paper for the immobilization of (bio)recognition elements (eg., enzymes, antibodies, DNA, molecularly imprinted polymers) with the overriding goal to develop accurate and reliable paper-based electrochemical biosensors. Furthermore, we highlighted how to take advantage of paper for designing smart configurations by integrating different analytical processes in an eco-designed analytical tool, starting from the immobilization of the (bio)receptor and the reagents, through a designed sample flow along the device, until the analyte detection.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Polímeros Molecularmente Impressos , Anticorpos , Engenharia
7.
Chem Commun (Camb) ; 59(29): 4300-4303, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36928485

RESUMO

This communication describes the development of polyvinyl chloride electrochemical system in which a paper layer loaded with reagents is inserted into the device, demonstrating a new concept of a paper card-like pad for a reagent-free and easy measurement of the target analyte in solution. This device detects glucose in artificial tears in the range of 0.2-2 mM with a detection limit of 50 µM by simply adding the artificial tears to the paper card-like pad. The novel configuration goes beyond the state of the art, widening the application range of paper in the design of smart analytical devices.


Assuntos
Lubrificantes Oftálmicos , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Eletroquímicas , Glucose , Indicadores e Reagentes , Papel , Cloreto de Polivinila/química
8.
Anal Bioanal Chem ; 415(6): 1149-1157, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36700985

RESUMO

The fast-growing healthcare demand for user-friendly and affordable analytical tools is driving the efforts to develop reliable platforms for the customization of therapy based on individual health conditions. In this overall scenario, we developed a paper-based electrochemical sensor for the quantification of iron ions in serum as a cost-effective sensing tool for the correct supplement administration. In detail, the working electrode of the screen-printed device has been modified with a nanocomposite constituted of carbon black and gold nanoparticles with a drop-casting procedure. Square wave voltammetry has been adopted as an electrochemical technique. This sensor was further modified with Nafion for iron quantification in serum after sample treatment with trifluoroacetic acid. Under optimized conditions, iron ions have been detected with a LOD down to 0.05 mg/L and a linearity up to 10 mg/L in standard solution. The obtained results have been compared with reference methods namely commercial colorimetric assay and atomic absorption spectroscopy, obtaining a good correlation within the experimental errors. These results demonstrated the suitability of the developed paper-based sensor for future applications in precision medicine of iron-deficiency diseases.


Assuntos
Ferro , Nanopartículas Metálicas , Ferro/química , Ouro/química , Limite de Detecção , Eletrodos , Técnicas Eletroquímicas/métodos
9.
Biosens Bioelectron ; 216: 114680, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113389

RESUMO

Cardiovascular diseases (CVDs) are the number one cause of death worldwide, taking 17.9 million lives each year. The rapid, sensitive, and accurate determination of cardiac biomarkers is vital for the timely diagnosis of CVDs. For accurate diagnosis, dependence on a single biomarker is unreliable because each one has also been linked to other diseases. To overcome this problem, the multiplexed determination of two or more markers has emerged as a promising alternative to single-marker analysis. Over the last 5 years, research interest in the development of biosensors for targeting multiple cardiac markers has increased. In this study, we critically reviewed the various multiplexed biosensing approaches reported during the last 5 years, categorizing them by signal readouts. Prospective detection configurations, capture probes, electrode design strategies, electrode types, nanomaterials, reporter tags, and assay types were reviewed, tabulated, and critically discussed. Then, their advantages and limitations were highlighted. For each category, we provided our perspective as well as the overall critical discussion. Lastly, we summarized potential commercial multiplexed cardiac biosensors and commented on the challenges and future prospects for such sensors.


Assuntos
Técnicas Biossensoriais , Doenças Cardiovasculares , Nanoestruturas , Biomarcadores , Técnicas Biossensoriais/métodos , Doenças Cardiovasculares/diagnóstico , Humanos , Estudos Prospectivos
10.
Mikrochim Acta ; 189(8): 311, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920941

RESUMO

The increasing demand for food and the need for a sustainability vision in the agri-food sector have boosted novel approaches for food management, enhancing the valorization of wastes and by-products belonging to the food industry. Herein, we present a novel paper-based origami device to assess the amount of both glucosinolate and glucose in a food waste product belonging to Brassicaceae plants, to evaluate the quality value and the correct management of waste samples. The device has been designed as an origami paper-based platform constituted of two paper-based biosensors to work synergistically in a multiplexed detection. In detail, a monoenzymatic biosensor and a bienzymatic biosensor were configured for the detection of glucose and glucosinolates, respectively, using filter paper pads preloaded with glucose oxidase and/or myrosinase. To complete the paper-based platform, the enzyme-preloaded pads were combined with office paper-based electrodes modified with Carbon black/Prussian Blue nanoparticles for the measurement of enzymatic by-product at a low applied potential (i.e., 0 V versus Ag/AgCl). Overall, this paper-based platform measured glucose and glucosinolate (i.e., sinigrin) with a linear range up to 2.5 and 1.5 mM, and detection limits of 0.05 and 0.07 mM, respectively. The repeatability corresponded to an RSD% equal to 5% by testing 10 mM of glucose, and 10% by testing 1 mM of sinigrin. The accuracy of the developed multiplex device was evaluated by recovery studies at two different levels of sinigrin, i.e., 0.25 and 0.5 mM, obtaining recoveries values equal to (111 ± 3) % and (86 ± 1) %, respectively. The multiplex detection of both glucose and glucosinolate in Brassicaceae samples evaluates the quality values of the waste sample, ensuring the quality of the re-used food product waste by using an eco-designed analytical tool. The combination of paper-based devices for quality control of food waste with the re-use of these food products represents a sustainable approach that perfectly matches sustainable agrifood practices as well as the overall approach of the circular economy.


Assuntos
Glucosinolatos , Eliminação de Resíduos , Alimentos , Glucose , Papel , Controle de Qualidade
11.
J Mater Chem B ; 10(44): 9021-9039, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35899594

RESUMO

In the last few decades, nanomaterials have made great advances in the biosensor field, thanks to their ability to enhance several key issues of biosensing analytical tools, namely, sensitivity, selectivity, robustness, and reproducibility. The recent trend of sustainability has boosted the progress of novel and eco-designed electrochemical paper-based devices to detect easily the target analyte(s) with high sensitivity in complex matrices. The huge attention given by the scientific community and industrial sectors to paper-based devices is ascribed to the numerous advantages of these cost-effective analytical tools, including the absence of external equipment for solution flow, thanks to the capillary force of paper, the fabrication of reagent-free devices, because of the loading of reagents on the paper, and the easy multistep analyses by using the origami approach. Besides these features, herein we highlight the multifarious aspects of the nanomaterials such as (i) the significant enlargement of the electroactive surface area as well as the area available for the desired chemical interactions, (ii) the capability of anchoring biorecognition elements on the electrode surface on the paper matrix, (iii) the improvement of the conductivity of the cellulose matrix, (iv) the functionality of photoelectrochemical properties within the cellulose matrix, and (v) the improvement of electrochemical capabilities of conductive inks commonly used for electrode printing on the paper support, for the development of a new generation of paper-based electrochemical biosensors applied in the biomedical field. The state of the art over the last ten years has been analyzed highlighting the various functionalities that arise from the integration of nanomaterials with paper-based electrochemical biosensors for the detection of biomarkers.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Reprodutibilidade dos Testes , Nanoestruturas/química , Biomarcadores , Celulose
12.
Sens Actuators B Chem ; 369: 132379, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35855726

RESUMO

According to World Health Organization reports, large numbers of people around the globe have been infected or died for Covid-19 due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Researchers are still trying to find a rapid and accurate diagnostic method for revealing infected people by low viral load with the overriding goal of effective diagnostic management. Monitoring the body metabolic changes is known as an effective and inexpensive approach for the evaluation of the infected people. Here, an optical sniffer is introduced to detect exhaled breath metabolites of patients with Covid-19 (60 samples), healthy humans (55 samples), and cured people (15 samples), providing a unique color pattern for differentiation between the studied samples. The sniffer device is installed on a thin face mask, and directly exposed to the exhaled breath stream. The interactions occurring between the volatile compounds and sensing components such as porphyrazines, modified organic dyes, porphyrins, inorganic complexes, and gold nanoparticles allowing for the change of the color, thus being tracked as the sensor responses. The assay accuracy for the differentiation between patient, healthy and cured samples is calculated to be in the range of 80%-84%. The changes in the color of the sensor have a linear correlation with the disease severity and viral load evaluated by rRT-PCR method. Interestingly, comorbidities such as kidney, lung, and diabetes diseases as well as being a smoker may be diagnosed by the proposed method. As a powerful detection device, the breath sniffer can replace the conventional rapid test kits for medical applications.

13.
Biosensors (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735549

RESUMO

Herein, we report a proof-of-concept algal cytosensor for the electrochemical quantification of bacteria in wastewater, exploiting the green photosynthetic alga Chlamydomonas reinhardtii immobilized on carbon black (CB) nanomodified screen-printed electrodes. The CB nanoparticles are used as nanomodifiers, as they are able to sense the oxygen produced by the algae and thus the current increases when algae are exposed to increasing concentrations of bacteria. The sensor was tested on both standard solutions and real wastewater samples for the detection Escherichia coli in a linear range of response from 100 to 2000 CFU/100 mL, showing a limit of detection of 92 CFU/100 mL, in agreement with the maximum E. coli concentration established by the Italian law for wastewater (less than 5000 CFU/100 mL). This bacterium was exploited as a case study target of the algal cytosensor to demonstrate its ability as an early warning analytical system to signal heavy loads of pathogens in waters leaving the wastewater treatment plants. Indeed, the cytosensor is not selective towards E. coli but it is capable of sensing all the bacteria that induce the algae oxygen evolution by exploiting the effect of their interaction. Other known toxicants, commonly present in wastewater, were also analyzed to test the cytosensor selectivity, with any significant effect, apart from atrazine, which is a specific target of the D1 protein of the Chlamydomonas photosystem II. However, the latter can also be detected by chlorophyll fluorescence simultaneously to the amperometric measurements. The matrix effect was evaluated, and the recovery values were calculated as 105 ± 8, 83 ± 7, and 88 ± 7% for 1000 CFU/100 mL of E. coli in Lignano, San Giorgio, and Pescara wastewater samples, respectively.


Assuntos
Chlamydomonas reinhardtii , Infecções por Escherichia coli , Carbono/química , Eletrodos , Escherichia coli , Oxigênio , Fuligem , Águas Residuárias
14.
Biosens Bioelectron ; 205: 114119, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231751

RESUMO

Pesticides are largely used at worldwide level to improve food production, fulfilling the needs of the global population which is increasing year by year. Although pesticides are beneficial for crop production, their extensive use has serious consequences for the pollution of the produced food as well as for soil and groundwaters. Indeed, it is reported that 50% of sprayed pesticides reach different destinations other than their target species, including soil, surface waters, and groundwaters. For this reason, we developed a flower-like origami paper-based device for pesticides detection in aerosol phase for precision agriculture. In detail, the paper-based electrochemical platform detects paraoxon, 2,4-dichlorophenoxyacetic acid, and glyphosate at ppb levels by measuring their inhibitory activity towards three different enzymes namely butyrylcholinesterase, alkaline phosphatase, and peroxidase enzyme, respectively. This integrated electrochemical device is composed of three office paper-based screen-printed electrodes and filter paper-based pads loaded with enzymes and enzymatic substrates. The pesticide detection is carried out by measuring through chronoamperometric technique the initial and residual enzymatic activity by using a smartphone-assisted potentiostat and evaluating the percentage of inhibition, proportional to the amount of aerosolized pesticides. This paper-based device was able to detect the three classes of pesticides in aerosol phase with limits of detection equal to 30 ppb, 10 ppb, and 2 ppb, respectively for 2,4-D, glyphosate, and paraoxon.


Assuntos
Técnicas Biossensoriais , Praguicidas , Aerossóis , Agricultura , Técnicas Biossensoriais/métodos , Butirilcolinesterase , Praguicidas/análise
15.
Biosens Bioelectron ; 200: 113909, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995838

RESUMO

Coronavirus disease 2019 (COVID-19) has been recognized as a global pandemic outbreak, opening the most severe socio-economic crisis since World War II. Different scientific activities have been emerged in this global scenario, including the development of innovative analytical tools to measure nucleic acid, antibodies, and antigens in the nasopharyngeal swab, serum, and saliva for prompt identification of COVID-19 patients and to evaluate the immune response to the vaccine. The detection of SARS-CoV-2 in saliva remains a challenge for the lack of sufficient sensitivity. To address this issue, we developed a novel paper-based immunoassay using magnetic beads to support the immunological chain and 96-well wax-printed paper plate as a platform for color visualization by using a smartphone combined with Spotxel free-charge app. To assess the reliability of the measurement of SARS-CoV-2 in saliva, untreated saliva was used as a specimen and the calibration curve demonstrated a dynamic range up to 10 µg/mL, with a detection limit equal to 0.1 µg/mL. The effectiveness of this sustainable analytical tool in saliva was evaluated by comparing the data with the nasopharyngeal swab specimens sampled by the same patients and tested with Real-Time PCR reference method, founding 100% of agreement, even in the case of high Cycle Threshold (CT) numbers (low viral load). Furthermore, the positive saliva samples were characterized by the next-generation sequencing method, demonstrating the capability to detect the Delta variant, which is actually (July 2021) the most relevant variant of concern.


Assuntos
Técnicas Biossensoriais , COVID-19 , Colorimetria , Humanos , Imunoensaio , Fenômenos Magnéticos , Nasofaringe , Reprodutibilidade dos Testes , SARS-CoV-2 , Saliva , Smartphone , Manejo de Espécimes
16.
Talanta ; 237: 122869, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736707

RESUMO

Point-of-care devices have attracted a huge interest by the scientific community because of the valuable potentiality for rapid diagnosis and precision medicine through cost-effective and easy-to-use devices for on-site measurement by unskilled personnel. Herein, we reported a smartphone-assisted electrochemical device consisted of a screen-printed electrode modified with carbon black nanomaterial and a commercially available smartphone potentiostat i.e. EmStat3 Blue, for sensitive detection of tyrosine. Once optimized the conditions, tyrosine was detected in standard solutions by square wave voltammetry, achieving a linear range comprised between 30 and 500 µM, with a detection limit equal to 4.4 µM. To detect tyrosine in serum, the interference of another amino acid i.e. tryptophan was hindered using a sample treatment with an extraction cartridge. The agreement of results analyzing serum samples with HPLC reference method and with the developed smart sensing system demonstrated the suitability of this smartphone-assisted sensing tool for cost-effective and rapid analyses of tyrosine in serum samples.


Assuntos
Técnicas Eletroquímicas , Smartphone , Eletrodos , Limite de Detecção , Fuligem , Tirosina
17.
Anal Chem ; 93(43): 14369-14374, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34669396

RESUMO

Corrosion occurring in reinforced concrete has turned into a primary concern of the current century, concrete being the most ubiquitous and predominant material used in the construction industry. Among the many interrelated processes that trigger corrosion of metallic reinforcements, the penetration of chloride ions into the concrete matrix is the most insidious threat. Herein, we developed the first electrochemical device entirely made of paper that allows for the direct, prompt, and noninvasive evaluation of free chloride ion contamination in concrete-based constructions. Our device is based on a three-layer wax-modified filter paper, consisting of two Ag/AgCl screen-printed electrodes that are interfaced by a junction pad in a sandwich-like configuration. Filter paper allows for generating a vertical-flow potentiometric device capable of measuring the electrochemical potential between two solutions containing different concentrations of chloride ions, which are separately drop-cast on the top and bottom layers. After demonstrating the analytical performance of the device, the same principle was applied to the evaluation of the chloride contents in different concrete samples, exploiting paper as a suitable interfacing material for potentiometric measurements on the cement solid surface. Laboratory-prepared concrete samples with known chloride contents were first assessed, and then, the paper-based vertical-flow device was applied to real concrete structures at the Giacomo Manzù Museum (Ardea, Italy) for the evaluation of chloride contamination caused by the proximity to the seaside. The capability of our device to provide timely warning of the risk conditions of concrete-based artifacts was demonstrated.

18.
Biosensors (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34562898

RESUMO

The recent global events of COVID-19 in 2020 have alerted the world to the risk of viruses and their impacts on human health, including their impacts in the social and economic sectors. Rapid tests are urgently required to enable antigen detection and thus to facilitate rapid and simple evaluations of contagious individuals, with the overriding goal to delimitate spread of the virus among the population. Many efforts have been achieved in recent months through the realization of novel diagnostic tools for rapid, affordable, and accurate analysis, thereby enabling prompt responses to the pandemic infection. This review reports the latest results on electrochemical and optical biosensors realized for the specific detection of SARS-CoV-2 antigens, thus providing an overview of the available diagnostics tested and marketed for SARS-CoV-2 antigens as well as their pros and cons.


Assuntos
Antígenos Virais/análise , Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/imunologia , Técnicas Biossensoriais , COVID-19/imunologia , Técnicas Eletroquímicas , Humanos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade
19.
Biosensors (Basel) ; 11(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562920

RESUMO

In the last 10 years, paper-based electrochemical biosensors have gathered attention from the scientific community for their unique advantages and sustainability vision. The use of papers in the design the electrochemical biosensors confers to these analytical tools several interesting features such as the management of the solution flow without external equipment, the fabrication of reagent-free devices exploiting the porosity of the paper to store the reagents, and the unprecedented capability to detect the target analyte in gas phase without any sampling system. Furthermore, cost-effective fabrication using printing technologies, including wax and screen-printing, combined with the use of this eco-friendly substrate and the possibility of reducing waste management after measuring by the incineration of the sensor, designate these type of sensors as eco-designed analytical tools. Additionally, the foldability feature of the paper has been recently exploited to design and fabricate 3D multifarious biosensors, which are able to detect different target analytes by using enzymes, antibodies, DNA, molecularly imprinted polymers, and cells as biocomponents. Interestingly, the 3D structure has recently boosted the self-powered paper-based biosensors, opening new frontiers in origami devices. This review aims to give an overview of the current state origami paper-based biosensors, pointing out how the foldability of the paper allows for the development of sensitive, selective, and easy-to-use smart and sustainable analytical devices.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Papel , Eletrodos
20.
Talanta ; 232: 122474, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074442

RESUMO

In this work, a wax-patterned chromatographic paper has been utilized as a holistic platform to 1) synthesize Prussian Blue Nanoparticles (sensing species), 2) load the reagents for the assay, 3) concentrate the sample through multistep, and 4) visualize the determination of silver ions. Waters are continuously affected by changes in the composition, thus the utilization of reagent-free analytical tools is of huge interest for smart drinking water monitoring. Herein, we report the characterization and application of a multi-array paper-based platform for the colorimetric determination of silver ions based on the conversion from Prussian Blue to its silver-based analogue, namely Ag4[Fe(CN)6]. In particular, the platform highlights the increase of sensitivity due to paper pre-concentration of sample, that can be easily adapted to the analytical necessities. Within the proposed experimental setup, Ag+ is visualized down to a detection limit of 0.9 µM, with high repeatability and satisfactory recoveries in the range comprised between 90 and 113%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...