Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543689

RESUMO

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Assuntos
Complexos de Coordenação , Vírus da Hepatite B , Hepatite B Crônica , Naftalenossulfonatos , Masculino , Camundongos , Ratos , Animais , Cães , Vírus da Hepatite B/fisiologia , Antígenos de Superfície da Hepatite B/genética , RNA Viral , RNA Mensageiro , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Viral/genética , Hepatite B Crônica/tratamento farmacológico , DNA Circular
2.
Bioorg Med Chem Lett ; 94: 129456, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633618

RESUMO

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes. Key compounds demonstrated excellent cellular potency in addition to favorable ADME and pharmacokinetic profiles and were shown to be highly efficacious in a mouse model of HBV replication. Aminoindane derivative AB-506 was subsequently advanced into clinical development.


Assuntos
Antivirais , Proteínas do Capsídeo , Capsídeo , Animais , Camundongos , Antivirais/farmacologia , Modelos Animais de Doenças , Relação Estrutura-Atividade , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/metabolismo
3.
RSC Med Chem ; 13(3): 343-349, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35434625

RESUMO

Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log10 reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.

4.
Antiviral Res ; 197: 105211, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826506

RESUMO

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Proteínas do Core Viral/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Camundongos , Ratos , Montagem de Vírus/efeitos dos fármacos
5.
ACS Infect Dis ; 5(5): 725-737, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30403127

RESUMO

Current approved nucleoside analogue treatments for chronic hepatitis B virus (HBV) infection are effective at controlling viral titer but are not curative and have minimal impact on the production of viral proteins such as surface antigen (HBsAg), the HBV envelope protein believed to play a role in maintaining the immune tolerant state required for viral persistence. Novel agents are needed to effect HBV cure, and reduction of HBV antigenemia may potentiate activation of effective and long-lasting host immune control. ARB-1740 is a clinical stage RNA interference agent composed of three siRNAs delivered using lipid nanoparticle technology. In a number of cell and animal models of HBV, ARB-1740 caused HBV RNA reduction, leading to inhibition of multiple elements of the viral life cycle including HBsAg, HBeAg, and HBcAg viral proteins as well as replication marker HBV DNA. ARB-1740 demonstrated pan-genotypic activity in vitro and in vivo, targeting three distinct highly conserved regions of the HBV genome, and effectively inhibited replication of nucleoside analogue-resistant HBV variants. Combination of ARB-1740 with a capsid inhibitor and pegylated interferon-alpha led to greater liver HBsAg reduction which correlated with more robust induction of innate immune responses in a human chimeric mouse model of HBV. The preclinical profile of ARB-1740 demonstrates the promise of RNA interference and HBV antigen reduction in treatment strategies driving toward a cure for HBV.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Genoma Viral , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/química , Replicação Viral/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29555628

RESUMO

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Assuntos
Antivirais/farmacologia , Capsídeo/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Montagem de Vírus/efeitos dos fármacos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , DNA Circular/metabolismo , DNA Viral/sangue , DNA Viral/metabolismo , Feminino , Guanina/análogos & derivados , Guanina/farmacologia , Vírus da Hepatite B/crescimento & desenvolvimento , Humanos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , RNA Viral/genética
7.
J Med Chem ; 59(13): 6293-302, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27366941

RESUMO

The hepatitis C viral proteins NS3/4A protease, NS5B polymerase, and NS5A are clinically validated targets for direct-acting antiviral therapies. The NS5B polymerase may be inhibited directly through the action of nucleosides or nucleotide analogues or allosterically at a number of well-defined sites. Herein we describe the further development of a series of thiophene carboxylate allosteric inhibitors of NS5B polymerase that act at the thumb pocket 2 site. Lomibuvir (1) is an allosteric HCV NS5B inhibitor that has demonstrated excellent antiviral activity and potential clinical utility in combination with other direct acting antiviral agents. Efforts to further explore and develop this series led to compound 23, a compound with comparable potency and improved physicochemical properties.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Tiofenos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Cicloexanóis/química , Cicloexanóis/farmacologia , Relação Dose-Resposta a Droga , Hepacivirus/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
8.
Antimicrob Agents Chemother ; 58(9): 5456-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24982088

RESUMO

VX-222, a thiophene-2-carboxylic acid derivative, is a selective nonnucleoside inhibitor of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In phase 1 and 2 clinical studies, VX-222 demonstrated effective antiviral efficacy, with substantial reductions in plasma HCV RNA in patients chronically infected with genotype 1 HCV. To characterize the potential for selection of VX-222-resistant variants in HCV-infected patients, the HCV NS5B gene was sequenced at baseline and during and after 3 days of VX-222 dosing (monotherapy) in a phase 1 study. Variants with the substitutions L419C/I/M/P/S/V, R422K, M423I/T/V, I482L/N/T, A486S/T/V, and V494A were selected during VX-222 dosing, and their levels declined over time after the end of dosing. Phenotypic analysis of these variants was conducted using HCV replicons carrying site-directed mutations. Of the 17 variants, 14 showed reduced susceptibility to VX-222 compared with the wild type, with the L419C/S and R422K variants having higher levels of resistance (>200-fold) than the rest of the variants (6.8- to 76-fold). The M423I and A486S variants remained susceptible to VX-222. The 50% effective concentration (EC50) for the L419P variant could not be obtained due to the poor replication of this replicon. The majority of the variants (15/17) were less fit than the wild type. A subset of the variants, predominately the L419S and R422K variants, were observed when the efficacy and safety of VX-222- and telaprevir-based regimens given for 12 weeks were investigated in genotype 1 HCV-infected patients in a phase 2 study. The NS3 and NS5B variants selected during the dual combination therapy showed reduced susceptibility to both telaprevir and VX-222 and had a lower replication capacity than the wild type. The phase 1b study has the ClinicalTrials.gov identifier NCT00911963, and the phase 2a study has ClinicalTrials.gov identifier NCT01080222.


Assuntos
Antivirais/farmacologia , Cicloexanóis/farmacologia , Variação Genética/efeitos dos fármacos , Variação Genética/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Tiofenos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Sequência de Bases , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Genótipo , Hepatite C/tratamento farmacológico , Humanos , Dados de Sequência Molecular , Mutação/efeitos dos fármacos , Mutação/genética , Oligopeptídeos/farmacologia , Fenótipo , Replicon/efeitos dos fármacos , Replicon/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
Antimicrob Agents Chemother ; 57(12): 6236-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100495

RESUMO

Telaprevir is a linear, peptidomimetic small molecule that inhibits hepatitis C virus (HCV) replication by specifically inhibiting the NS3·4A protease. In phase 3 clinical studies, telaprevir in combination with peginterferon and ribavirin (PR) significantly improved sustained virologic response (SVR) rates in genotype 1 chronic HCV-infected patients compared with PR alone. In patients who do not achieve SVR after treatment with telaprevir-based regimens, variants with mutations in the NS3·4A protease region have been observed. Such variants can contribute to drug resistance and limit the efficacy of treatment. To gain a better understanding of the viral resistance profile, we conducted phenotypic characterization of the variants using HCV replicons carrying site-directed mutations. The most frequently observed (significantly enriched) telaprevir-resistant variants, V36A/M, T54A/S, R155K/T, and A156S, conferred lower-level resistance (3- to 25-fold), whereas A156T and V36M+R155K conferred higher-level resistance (>25-fold) to telaprevir. Rarely observed (not significantly enriched) variants included V36I/L and I132V, which did not confer resistance to telaprevir; V36C/G, R155G/I/M/S, V36A+T54A, V36L+R155K, T54S+R155K, and R155T+D168N, which conferred lower-level resistance to telaprevir; and A156F/N/V, V36A+R155K/T, V36M+R155T, V36A/M+A156T, T54A+A156S, T54S+A156S/T, and V36M+T54S+R155K, which conferred higher-level resistance to telaprevir. All telaprevir-resistant variants remained fully sensitive to alpha interferon, ribavirin, and HCV NS5B nucleoside and nonnucleoside polymerase inhibitors. In general, the replication capacity of telaprevir-resistant variants was lower than that of the wild-type replicon.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Oligopeptídeos/farmacologia , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Linhagem Celular , Hepacivirus/genética , Humanos , Concentração Inibidora 50 , Mutagênese Sítio-Dirigida , Inibidores de Proteases/farmacologia
10.
Antimicrob Agents Chemother ; 54(6): 2681-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20368394

RESUMO

We characterized a novel substitution conferring moderate resistance to telaprevir, a peptidomimetic inhibitor of hepatitis C virus protease. V36C conferred a 4.0-fold increase in the telaprevir 50% inhibitory concentration in an enzyme assay and a 9.5-fold increase in the replicon model. The replication capacity of a replicon harboring V36C was close to that of the wild-type protease. This case emphasizes the complexity of hepatitis C virus resistance to protease inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Oligopeptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Substituição de Aminoácidos , Antivirais/química , Farmacorresistência Viral/genética , Variação Genética , Hepacivirus/enzimologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Mimetismo Molecular , Oligopeptídeos/química , Inibidores de Serina Proteinase/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...