Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(46): 8727-8740, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367836

RESUMO

Reactions in the atmospheric aqueous phase are an important source of secondary organic aerosols (SOA). Within the present study, the reactions of triplet-state imidazole-2-carboxaldehyde (32-IC*) with methyl vinyl ketone (MVK, R1), methacrolein (MACR, R2), and methacrylic acid (MAA, R3), as well as the reaction of triplet-state 3,4-dimethoxybenzaldehyde (3DMB*) with the unsaturated compounds (MVK, R4), (MACR, R5), and (MAA, R6), in the aqueous phase were investigated using laser flash excitation-laser long path absorption and ultraperformance liquid chromatography coupled with high definition electrospray ionization spectrometry. The second-order reaction constants for 32-IC* were determined to be k1 = (1.0 ± 0.1) × 109 L mol-1 s-1 at pH 4-5 and 9, k2 = (1.4 ± 0.4) × 109 L mol-1 s-1 and (1.5 ± 0.1) × 109 L mol-1 s-1 at pH 4-5 and 9, and k3 = (1.4 ± 0.4) × 109 L mol-1 s-1 and (1.1 ± 0.4) × 108 L mol-1 s-1 at pH 4-5 and 9, respectively. The main products of the [2 + 2] photocycloaddition reactions of 32-IC* with both monomer and dimer of MVK as well as MACR were characterized. Similarly, the [2 + 2] photocycloaddition of the carbonyl of the excited triplet state of 3,4-dimethoxybenzaldehyde (3DMB*) with MVK was observed. The second order rate constants for the reactions of 3DMB* were determined: k4 = (1.5 ± 0.2) × 108 L mol-1 s-1, k5 = (2.8 ± 0.5) × 108 L mol-1 s-1, and k6 = (5.2 ± 1.2) × 106 L mol-1 s-1 at pH 9. The studied reactions show that different triplet photosensitizers react with strongly varying rate constants. Advanced CAPRAM process model studies show that active photosensitizers such as 3DMB* can quickly react with unsaturated organic compounds under deliquesced aerosol conditions modifying SOA, while the quenching with oxygen dominates the excited photosensitizer loss under cloud conditions.

2.
Proc Natl Acad Sci U S A ; 117(21): 11321-11327, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393627

RESUMO

The neonicotinoid nitenpyram (NPM) is a multifunctional nitroenamine [(R1N)(R2N)C=CHNO2] pesticide. As a nitroalkene, it is structurally similar to other emerging contaminants such as the pharmaceuticals ranitidine and nizatidine. Because ozone is a common atmospheric oxidant, such compounds may be oxidized on contact with air to form new products that have different toxicity compared to the parent compounds. Here we show that oxidation of thin solid films of NPM by gas-phase ozone produces unexpected products, the majority of which do not contain oxygen, despite the highly oxidizing reactant. A further surprising finding is the formation of gas-phase nitrous acid (HONO), a species known to be a major photolytic source of the highly reactive hydroxyl radical in air. The results of application of a kinetic multilayer model show that reaction was not restricted to the surface layers but, at sufficiently high ozone concentrations, occurred throughout the film. The rate constant derived for the O3-NPM reaction is 1 × 10-18 cm3⋅s-1, and the diffusion coefficient of ozone in the thin film is 9 × 10-10 cm2⋅s-1 These findings highlight the unique chemistry of multifunctional nitroenamines and demonstrate that known chemical mechanisms for individual moieties in such compounds cannot be extrapolated from simple alkenes. This is critical for guiding assessments of the environmental fates and impacts of pesticides and pharmaceuticals, and for providing guidance in designing better future alternatives.

3.
J Agric Food Chem ; 67(6): 1638-1646, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30698961

RESUMO

Neonicotinoids (NN), first introduced in 1991, are found on environmental surfaces where they undergo photolytic degradation. Photolysis studies of thin films of NN were performed using two approaches: (1) transmission FTIR, in which solid films of NN and the gas-phase products were analyzed simultaneously, and (2) attenuated-total-reflectance FTIR combined with transmission FTIR, in which solid films of NN and the gas-phase products were probed in the same experiment but not at the same time. Photolysis quantum yields using broadband irradiation centered at 313 nm were (2.2 ± 0.9) × 10-3 for clothianidin (CLD), (3.9 ± 0.3) × 10-3 for thiamethoxam (TMX), and (3.3 ± 0.5) × 10-3 for dinotefuran (DNF), with all errors being ±1 s. At 254 nm, which was used to gain insight into the wavelength dependence, quantum yields were in the range of (0.8-20) × 10-3 for all NNs, including acetamiprid (ACM) and thiacloprid (TCD). Nitrous oxide (N2O), a potent greenhouse gas, was the only gas-phase product detected for the photolysis of nitroguanidines, with yields of ΔN2O/ΔNN > 0.5 in air at both 313 and 254 nm. The atmospheric lifetimes with respect to photolysis for CLD, TMX, and DNF, which absorb light in the actinic region, are estimated to be 15, 10, and 11 h, respectively, at a solar zenith angle of 35° and 12, 8, and 10 h at a solar zenith angle of 15°.


Assuntos
Inseticidas/química , Neonicotinoides/química , Óxido Nitroso/química , Fotólise/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Luz Solar
4.
Environ Sci Technol ; 52(5): 2760-2767, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29345468

RESUMO

The environmental fates of nitenpyram (NPM), a widely used neonicotinoid insecticide, are not well-known. A thin solid film of NPM deposited on a germanium attenuated total reflectance (ATR) crystal was exposed to radiation from a low-pressure mercury lamp at 254 nm, or from broadband low pressure mercury photolysis lamps centered at 350 or 313 nm. The loss during photolysis was followed in time using FTIR. The photolysis quantum yields (ϕ), defined as the number of NPM molecules lost per photon absorbed, were determined to be (9.4 ± 1.5) × 10-4 at 350 nm, (1.0 ± 0.3) × 10-3 at 313 nm, and (1.2 ± 0.4) × 10-2 at 254 nm (±2σ). Imines, one with a carbonyl group, were detected as surface-bound products and gaseous N2O was generated in low (11%) yield. The UV-vis absorption spectra of NPM in water was different from that in acetonitrile, dichloromethane, and methanol, or in a thin solid film. The photolytic lifetime of solid NPM at a solar zenith angle at 35° is calculated to be 36 min, while that for NPM in water is 269 min, assuming that the quantum yield is the same as in the solid. Thus, there may be a significant sensitivity to the medium for photolytic degradation and the lifetime of NPM in the environment.


Assuntos
Luz Solar , Raios Ultravioleta , Neonicotinoides , Fotoquímica , Fotólise
5.
Environ Sci Technol ; 51(5): 2660-2668, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-27989110

RESUMO

Imidacloprid (IMD) is the most widely used neonicotinoid insecticide found on environmental surfaces and in water. Analysis of surface-bound IMD photolysis products was performed using attenuated total reflectance Fourier transfer infrared (ATR-FTIR) analysis, electrospray ionization (ESI-MS), direct analysis in real time mass spectrometry (DART-MS), and transmission FTIR for gas-phase products. Photolysis quantum yields (ϕ) for loss of IMD were determined to be (1.6 ± 0.6) × 10-3 (1s) at 305 nm and (8.5 ± 2.1) × 10-3 (1s) at 254 nm. The major product is the imidacloprid urea derivative (IMD-UR, 84% yield), with smaller amounts of the desnitro-imidacloprid (DN-IMD, 16% yield) product, and gaseous nitrous oxide (N2O). Theoretical calculations show that the first step of the main mechanism is the photodissociation of NO2, which then recombines with the ground electronic state of IMD radical to form IMD-UR and N2O in a thermally driven process. The photolytic lifetime of IMD at a solar zenith angle of 35° is calculated to be 16 h, indicating the significant reaction of IMD over the course of a day. Desnitro-imidacloprid has been identified by others as having increased binding to target receptors compared to IMD, suggesting that photolysis on environmental surfaces increases toxicity.


Assuntos
Fotoquímica , Fotólise , Inseticidas/química , Luz Solar , Água
6.
Environ Sci Technol ; 48(6): 3218-27, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24555477

RESUMO

In recent years, it has been proposed that gas phase glyoxal could significantly contribute to ambient organic aerosol (OA) mass through multiphase chemistry. Of particular interest is the reaction between glyoxal and ammonium cations producing light-absorbing compounds such as imidazole derivatives. It was recently shown that imidazole-2-carboxaldehyde (IC) can act as a photosensitizer, initiating aerosol growth in the presence of gaseous volatile organic compounds. Given the potential importance of this new photosensitized growth pathway for ambient OA, the related reaction mechanism was investigated at a molecular level. Bulk and flow tube experiments were performed to identify major products of the reaction of limonene with the triplet state of IC by direct (±)ESI-HRMS and UPLC/(±)HESI-HRMS analysis. Detection of recombination products of IC with limonene or with itself, in bulk and flow tube experiments, showed that IC is able to initiate a radical chemistry in the aerosol phase under realistic irradiation conditions. Furthermore, highly oxygenated limonene reaction products were detected, clearly explaining the observed OA growth. The chemistry of peroxy radicals derived from limonene upon addition of oxygen explains the formation of such low-volatile compounds without any traditional gas phase oxidant.


Assuntos
Aerossóis/química , Monitoramento Ambiental/métodos , Glioxal/química , Aerossóis/análise , Cicloexenos/química , Gases/análise , Gases/química , Limoneno , Processos Fotoquímicos , Terpenos/química
7.
Faraday Discuss ; 165: 123-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601000

RESUMO

Secondary organic aerosols (SOA), which are produced by the transformations of volatile organic compounds in the atmosphere, play a central role in air quality, public health, visibility and climate, but their formation and aging remain poorly characterized. This study evidences a new mechanism for SOA formation based on photosensitized particulate-phase chemistry. Experiments were performed with a horizontal aerosol flow reactor where the diameter growth of the particles was determined as a function of various parameters. In the absence of gas-phase oxidant, experiments in which ammonium sulfate seeds containing glyoxal were exposed to gas-phase limonene and UV light exhibited a photo-induced SOA growth. Further experiments showed that this growth was due to traces of imidazole-2-carboxaldehyde (IC) in the seeds, a condensation product of glyoxal acting as an efficient photosensitizer. Over a 19 min irradiation time, 50 nm seed particles containing this compound were observed to grow between 3.5 and 30 +/- 3% in the presence of either limonene, isoprene, alpha-pinene, beta-pinene, or toluene in concentrations between 1.8 and 352 ppmv. The other condensation products of glyoxal, imidazole (IM) and 2,2-bi1H-imidazole (BI), also acted as photosensitizer but with much less efficiency under the same conditions. In the atmosphere, glyoxal and potentially other gas precursors would thus produce efficient photosensitizers in aerosol and autophotocatalyze SOA growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...