Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837720

RESUMO

The membrane bioreactor (MBR) is an efficient technology for the treatment of municipal and industrial wastewater for the last two decades. It is a single stage process with smaller footprints and a higher removal efficiency of organic compounds compared with the conventional activated sludge process. However, the major drawback of the MBR is membrane biofouling which decreases the life span of the membrane and automatically increases the operational cost. This review is exploring different anti-biofouling techniques of the state-of-the-art, i.e., quorum quenching (QQ) and model-based approaches. The former is a relatively recent strategy used to mitigate biofouling. It disrupts the cell-to-cell communication of bacteria responsible for biofouling in the sludge. For example, the two strains of bacteria Rhodococcus sp. BH4 and Pseudomonas putida are very effective in the disruption of quorum sensing (QS). Thus, they are recognized as useful QQ bacteria. Furthermore, the model-based anti-fouling strategies are also very promising in preventing biofouling at very early stages of initialization. Nevertheless, biofouling is an extremely complex phenomenon and the influence of various parameters whether physical or biological on its development is not completely understood. Advancing digital technologies, combined with novel Big Data analytics and optimization techniques offer great opportunities for creating intelligent systems that can effectively address the challenges of MBR biofouling.

2.
Energy Fuels ; 36(15): 8267-8273, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35966174

RESUMO

Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading.

3.
Front Chem ; 7: 906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998695

RESUMO

Here we present a comprehensive study on the effect of reaction parameters on the upgrade of an acetone, butanol and ethanol mixture-key molecules and platform products of great interest within the chemical sector. Using a selected high performing catalyst, Fe/MgO-Al2O3, the variation of temperature, reaction time, catalytic loading, and reactant molar ratio have been examined in this reaction. This work is aiming to not only optimize the reaction conditions previously used, but to step toward using less energy, time, and material by testing those conditions and analyzing the sufficiency of the results. Herein, we demonstrate that this reaction is favored at higher temperatures and longer reaction time. Also, we observe that increasing the catalyst loading had a positive effect on the product yields, while reactant ratios have shown to produce varied results due to the role of each reactant in the complex reaction network. In line with the aim of reducing energy and costs, this work showcases that the products from the upgrading route have significantly higher market value than the reactants; highlighting that this process represents an appealing route to be implemented in modern biorefineries.

4.
J Chromatogr A ; 1217(26): 4267-77, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20444465

RESUMO

In this work, parameters of the steric mass-formalism SMA are optimally ascertained for a reliable determination of the adsorption isotherms of beta-lactoglobulin A and B under non-isocratic conditions. For this purpose, static batch experiments are used in contrast to the protocols based on different experimental steps, which use a chromatographic column. It is shown that parameters can already be determined for a small number of experiments by using a systematic procedure based on optimal model-based experimental design and an efficient NLP-solver. The in different works observed anti-Langmuir shape of the isotherm for small concentrations of beta-lactoglobulin A was corroborated. Moreover, we also found indications for a porosity variation with changing protein concentrations.


Assuntos
Cromatografia por Troca Iônica/métodos , Lactoglobulinas/química , Adsorção , Modelos Teóricos , Eletricidade Estática , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...