Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Microbiol Resour Announc ; : e0011324, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530041

RESUMO

Herein is reported the draft genome sequence of a triple hybrid Escherichia coli strain isolated from a healthy donor feces. The assembly is 5.2 Mbp, composed of 247 contigs, with a N50 of 77, 241 bp, presenting a GC content of 50.8%.

3.
Arch Med Res ; 54(3): 247-260, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725379

RESUMO

BACKGROUND: Urinary tract infections (UTI) are one of the most common pathologies in Mexico and the majority are caused by uropathogenic Escherichia coli (UPEC). UPEC possesses virulence and resistance determinants that promote UTI development and affect diagnosis and treatment. This study aims to systematically review published reports of virulence genes, antibiotic resistance, and phylogenetic groups prevalent in clinical isolates of UPEC in the Mexican population. METHODS: Systematic review with meta-analysis was performed following PRISMA guidelines. Articles in both English and Spanish were included. Total prevalence with a 95% confidence interval of each characteristic was calculated. Heterogeneity between studies and geographical areas was assessed by the Cochran Q test (Q), I-square (I2), and H-square (H2). Egger's test was used for risk of bias in publications and asymmetry evaluations. RESULTS: Forty-two articles were analyzed. The most prevalent virulence genes were ecp (97.25%; n = 364) and fimH (82.34%; n = 1,422), which are associated with lower UTI, followed by papGII (40.98%; n = 810), fliC (38.87%; n = 319), hlyA (23.55%; n = 1,521), responsible for with upper UTI. More than 78.13% (n = 1,893) of the isolates were classified as multidrug-resistant, with a higher prevalence of resistance to those antibiotics that are implemented in the basic regimen in Mexico. The most frequently reported Extended Spectrum ß-Lactamase (ESBL) was CTX-M-1 (55.61%; n = 392), and the predominant phylogroup was B2 (35.94%; n = 1,725). CONCLUSION: UPEC strains are responsible for a large portion of both lower and upper UTI in Mexico, and their multi-drug resistance drastically reduces the number of therapeutic options available.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Virulência/genética , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Fatores de Virulência/genética , Fatores de Virulência/uso terapêutico , México/epidemiologia , Filogenia , Antibacterianos/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia
4.
Antibiotics (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884087

RESUMO

Escherichia coli is a well-recognized inhabitant of the animal and human gut. Its presence represents an essential component of the microbiome. There are six pathogenic variants of E. coli associated with diarrheal processes, known as pathotypes. These harbor genetic determinants that allow them to be classified as such. In this work, we report the presence of diarrheagenic pathotypes of E. coli strains isolated from healthy donors. Ninety E. coli strains were analyzed, of which forty-six (51%) harbored virulence markers specifics for diarrheagenic pathotypes, including four hybrids (one of them with genetic determinants of three DEC pathotypes). We also identified phylogenetic groups with a higher prevalence of B2 (45.6%) and A (17.8%). In addition, resistance to sulfonamides (100%), and aminoglycosides (100%) was found in 100% of the strains, with a lower prevalence of resistance to cefotaxime (13.3%), ceftriaxone (12.2%), fosfomycin (10%), and meropenem (0%). All analyzed strains were classified as multidrug resistant. Virulence genes were also investigated, which led us to propose three new virotypes. Among the virulence traits observed, the ability to form biofilms stands out, which was superior to that of the E. coli and Staphylococcus aureus strains used as positive controls.

5.
Microorganisms ; 10(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630329

RESUMO

Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.

6.
Microorganisms ; 9(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34835506

RESUMO

Urinary tract infections (UTIs) belong to the most common pathologies in Mexico and are mainly caused by Uropathogenic Escherichia coli (UPEC). UPEC possesses a wide diversity of virulence factors that allow it to carry out its pathogenesis mechanism in the urinary tract (UT). The development of morphotypes in UT represents an important feature of UPEC because it is associated with complications in diagnosis of UTI. The aim of this study was to determine the presence of bacterial morphotypes, virulence genes, virulence phenotypes, antibiotic resistant, and phylogenetic groups in clinical isolates of UPEC obtained from women in Sonora, Mexico. Forty UPEC isolates were obtained, and urine morphotypes were observed in 65% of the urine samples from where E. coli was isolated. Phylogenetic group B2 was the most prevalent. The most frequent virulence genes were fimH (100%), fliCD (90%), and sfaD/focC (72%). Biofilm formation (100%) and motility (98%) were the most prevalent phenotypes. Clinical isolates showed high resistance to aminoglycosides and ß-lactams antibiotics. These data suggest that the search for morphotypes in urine sediment must be incorporated in the urinalysis procedure and also that clinical isolates of UPEC in this study can cause upper, lower, and recurrent UTI.

7.
Curr Gastroenterol Rep ; 14(5): 386-94, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22798032

RESUMO

Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease.


Assuntos
Aderência Bacteriana/fisiologia , Diarreia/microbiologia , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enterotoxigênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/fisiopatologia , Intestino Delgado/fisiopatologia , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/terapia , Humanos , Mucosa Intestinal/citologia , Virulência
8.
J Bacteriol ; 193(7): 1622-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278287

RESUMO

Long polar fimbriae 1 (Lpf1) of Escherichia coli O157:H7 is a tightly regulated adhesin, with H-NS silencing the transcriptional expression of the lpf1 operon while Ler (locus of enterocyte effacement-encoded regulator) acts as an antisilencer. We mapped the minimal regulatory region of lpf1 required for H-NS- and Ler-mediated regulation and found that it is 79% AT rich. Three putative sites for H-NS binding were identified. Two of them, named silencer regulatory sequence 1 (SRS1) and SRS2, are located on a region that covers both of the lpf1 promoters (P1 and P2). The third putative H-NS binding site is located within the lpfA1 gene in a region extending from +258 bp to +545 bp downstream of ATG; however, this site does not seem to play a role in lpfA1 regulation under the conditions tested in this work. Ler was also found to interact with Ler binding sites (LBSs). Ler binding site 1 (LBS1) and LBS2 are located upstream of the two promoters. LBS1 overlaps SRS1, while LBS3 overlaps the P1 promoter and SRS2. Based on the experimental data, we propose that H-NS silences lpf1 expression by binding to both of the SRSs on the promoter region, forming an SRS-H-NS complex that prevents RNA polymerase-mediated transcription. A model of the regulation of the lpfA1 operon of E. coli O157:H7 by H-NS and Ler is discussed.


Assuntos
Adesinas de Escherichia coli/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Transativadores/metabolismo , Adesinas de Escherichia coli/genética , Sequência de Bases , Pegada de DNA , DNA Bacteriano , Desoxirribonucleases , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/genética
9.
Infect Immun ; 76(11): 5062-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18794291

RESUMO

The expression of the long polar fimbriae (LPF) of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by a tightly regulated process, and, therefore, the role of these fimbriae during binding to epithelial cells has been difficult to establish. We recently found that histone-like nucleoid-structuring protein (H-NS) binds to the regulatory sequence of the E. coli O157:H7 lpf1 operon and "silences" its transcription, while Ler inhibits the action of the H-NS protein and allows lpf1 to be expressed. In the present study, we determined how the deregulated expression of LPF affects binding of EHEC O157:H7 to tissue-cultured cells, correlating the adherence phenotype with lpf1 expression. We tested the adherence properties of EHEC hns mutant and found that this strain adhered 2.8-fold better than the wild type. In contrast, the EHEC ler mutant adhered 2.1-fold less than the wild type. The EHEC hns ler mutant constitutively expressed the lpf genes, and, therefore, we observed that the double mutant adhered 5.6-fold times better than the wild type. Disruption of lpfA in the EHEC hns and hns ler mutants or the addition of anti-LpfA serum caused a reduction in adhesion, demonstrating that the increased adherence was due to the expression of LPF. Immunogold-labeling electron microscopy showed that LPF is present on the surface of EHEC lpfA(+) strains. Furthermore, we showed that EHEC expressing LPF agglutinates red blood cells from different species and that the agglutination was blocked by the addition of anti-LpfA serum. Overall, our data confirmed that expression of LPF is a tightly regulated process and, for the first time, demonstrated that these fimbriae are associated with adherence and hemagglutination phenotypes in EHEC O157:H7.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Transativadores/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Transativadores/metabolismo
10.
J Bacteriol ; 189(16): 5916-28, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17586645

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 colonizes the human intestine and is responsible for diarrheal outbreaks worldwide. Previously we showed that EHEC produces long polar fimbriae (LPF) and that maximum expression is observed during the exponential phase of growth at 37 degrees C and pH 6.5. In this study, we analyzed the roles of several regulators in the expression of LPF using the beta-galactosidase reporter system, and we found that H-NS functions as a transcriptional silencer while Ler functions as an antisilencer of LPF expression. Interestingly, deletion of the hns and ler genes in EHEC caused constitutive expression of the fusion reporter protein. Semiquantitative reverse transcription (RT)-PCR was also used to analyze LPF expression in the EHEC ler or hns mutant strain. The hns mutant exhibited an increase in lpf mRNA expression, while expression in the ler mutant was decreased, compared to that in the wild-type strain. Using primer extension analysis, we identified two potential transcriptional start sites within the regulatory region of lpf and located consensus hexamers of -10 (CAAGAT) and -35 (TTCAAA), which are commonly found in sigma(70)-dependent promoters. Further, we determined whether H-NS and Ler interact directly with the lpf promoter region by using purified His-tagged proteins and electrophoretic mobility shift assays. Our data are the first to show direct binding interactions between the H-NS and Ler proteins within the regulatory sequence of the lpf operon. Based on the electrophoretic mobility shift assay, RT-PCR, primer extension, and beta-galactosidase assay results, we concluded that the E. coli O157:H7 lpf operon possesses a promoter dependent on sigma(70), that H-NS binds to the regulatory sequence of lpfA and "silences" the transcription of lpf, and that Ler binds to the regulatory sequence and inhibits the action of the H-NS protein.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/fisiologia , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transativadores/fisiologia , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Proteínas de Fímbrias/genética , Fases de Leitura Aberta/genética , Óperon , Reação em Cadeia da Polimerase , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...