Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 49(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603214

RESUMO

The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Astrócitos , Ratos , Animais , Dissulfeto de Glutationa/metabolismo , Astrócitos/metabolismo , Ritonavir/farmacologia , Ritonavir/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Células Cultivadas , Glutationa/metabolismo , Transporte Biológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mamíferos/metabolismo
2.
Neurochem Res ; 48(10): 3177-3189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37394677

RESUMO

Glucose-6-phosphate dehydrogenase (G6PDH) catalyses the rate limiting first step of the oxidative part of the pentose phosphate pathway (PPP), which has a crucial function in providing NADPH for antioxidative defence and reductive biosyntheses. To explore the potential of the new G6PDH inhibitor G6PDi-1 to affect astrocytic metabolism, we investigated the consequences of an application of G6PDi-1 to cultured primary rat astrocytes. G6PDi-1 efficiently inhibited G6PDH activity in lysates of astrocyte cultures. Half-maximal inhibition was observed for 100 nM G6PDi-1, while presence of almost 10 µM of the frequently used G6PDH inhibitor dehydroepiandrosterone was needed to inhibit G6PDH in cell lysates by 50%. Application of G6PDi-1 in concentrations of up to 100 µM to astrocytes in culture for up to 6 h did not affect cell viability nor cellular glucose consumption, lactate production, basal glutathione (GSH) export or the high basal cellular ratio of GSH to glutathione disulfide (GSSG). In contrast, G6PDi-1 drastically affected astrocytic pathways that depend on the PPP-mediated supply of NADPH, such as the NAD(P)H quinone oxidoreductase (NQO1)-mediated WST1 reduction and the glutathione reductase-mediated regeneration of GSH from GSSG. These metabolic pathways were lowered by G6PDi-1 in a concentration-dependent manner in viable astrocytes with half-maximal effects observed for concentrations between 3 and 6 µM. The data presented demonstrate that G6PDi-1 efficiently inhibits the activity of astrocytic G6PDH and impairs specifically those metabolic processes that depend on the PPP-mediated regeneration of NADPH in cultured astrocytes.


Assuntos
Astrócitos , Via de Pentose Fosfato , Ratos , Animais , Astrócitos/metabolismo , Via de Pentose Fosfato/fisiologia , Dissulfeto de Glutationa/metabolismo , Glucosefosfato Desidrogenase/metabolismo , NADP/metabolismo , Glutationa/metabolismo , Células Cultivadas
3.
Neurochem Res ; 48(7): 2241-2252, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36914795

RESUMO

Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, ß-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.


Assuntos
Trifosfato de Adenosina , Astrócitos , Ratos , Animais , Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Antimicina A , Glucose/metabolismo , Células Cultivadas , Ácido Láctico/metabolismo , Piruvatos
4.
Neurochem Res ; 48(5): 1438-1454, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36495387

RESUMO

Brain astrocytes are considered as glycolytic cell type, but these cells also produce ATP via mitochondrial oxidative phosphorylation. Exposure of cultured primary astrocytes in a glucose-free medium to extracellular substrates that are known to be metabolised by mitochondrial pathways, including pyruvate, lactate, beta-hydroxybutyrate, alanine and acetate, revealed that among the substrates investigated extracellular pyruvate was most efficiently consumed by astrocytes. Extracellular pyruvate was consumed by the cells almost proportional to time over hours in a concentration-dependent manner with apparent Michaelis-Menten kinetics [Km = 0.6 ± 0.1 mM, Vmax = 5.1 ± 0.8 nmol/(min × mg protein)]. The astrocytic consumption of pyruvate was strongly impaired in the presence of the monocarboxylate transporter 1 (MCT1) inhibitor AR-C155858 or by application of a 10-times excess of the MCT1 substrates lactate or beta-hydroxybutyrate. Pyruvate consumption by viable astrocytes was inhibited in the presence of UK5099, an inhibitor of the mitochondrial pyruvate carrier, or after application of the respiratory chain inhibitor antimycin A. In contrast, the mitochondrial uncoupler BAM15 strongly accelerated cellular pyruvate consumption. Lactate and alanine accounted after 3 h of incubation with pyruvate for around 60% and 10%, respectively, of the pyruvate consumed by the cells. These results demonstrate that consumption of extracellular pyruvate by astrocytes involves uptake via MCT1 and that the velocity of pyruvate consumption is strongly modified by substances that affect the entry of pyruvate into mitochondria or the activity of mitochondrial respiration.


Assuntos
Astrócitos , Ácido Pirúvico , Ratos , Animais , Ácido Pirúvico/metabolismo , Astrócitos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Proteínas de Transporte/metabolismo , Alanina/metabolismo , Lactatos/metabolismo , Encéfalo/metabolismo
5.
Neurochem Res ; 44(10): 2288-2300, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30788754

RESUMO

Brain astrocytes are considered to be highly glycolytic, but these cells also produce ATP via mitochondrial oxidative phosphorylation. To investigate how a metabolic depletion of glucose will affect the metabolism of astrocytes, we applied glucose at an initial concentration of 2 mM to cultured primary astrocytes and monitored the cell viability and various metabolic parameters during an incubation for up to 2 weeks. Already within 2 days of incubation the cells had completely consumed the applied glucose and lactate had accumulated in the medium to a concentration of around 3 mM. During the subsequent 10 days of incubation, the cell viability was not compromised while the extracellular lactate concentration declined to values of around 0.2 mM, before the cell viability was compromised. Application of known inhibitors of mitochondrial metabolism strongly accelerated glucose consumption and initial lactate production, while the lactate consumption was completely (antimycin A or 8-hydroxy efavirenz) and partially (efavirenz, metformin or tyrphostin 23) inhibited which caused rapid and delayed cell toxicity, respectively. The switch from glycolytic glucose metabolism to mitochondrial metabolism during the incubation was neither accompanied by alterations in the specific cytosolic lactate dehydrogenase activity or in the WST1 reduction capacity nor in the mitochondrial citrate synthase activity, but a cellular redistribution of mitochondria from a perinuclear to a more spread cytoplasmic localization was observed during the lactate consumption phase. These results demonstrate that cultured astrocytes survive a metabolism-induced glucose depletion very well by consuming lactate as fuel for mitochondrial ATP generation.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Ratos Wistar
6.
Neurochem Res ; 44(2): 333-346, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30443714

RESUMO

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH-bimane-conjugate (GS-B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS-B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicumarol/farmacologia , Propionatos/farmacologia , Quinolinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Células Cultivadas , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Ratos Wistar
7.
Neurochem Res ; 41(12): 3278-3288, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27655255

RESUMO

Efavirenz is a widely prescribed non-nucleoside reverse transcriptase inhibitor for the treatment of HIV infections. To test for potential long-term consequences of efavirenz on brain cells, cultured primary astrocytes were incubated with this substance or with its primary metabolite 8-hydroxy efavirenz for up to 7 days. Both, efavirenz and 8-hydroxy efavirenz caused time- and concentration-dependent cell toxicity and stimulated in subtoxic concentrations the glycolytic flux (glucose consumption and lactate release) in astrocytes. As 8-hydroxy efavirenz was less toxic than efavirenz and stimulated glycolysis in lower concentrations we tested for a potential hydroxylation of efavirenz to 8-hydroxy efavirenz in astrocytes. Analysis of media and cell lysates by HPLC-UV and mass spectrometry revealed that after 3 days of incubation viable astrocytes had accumulated about 17 and 7 % of the applied efavirenz and 8-hydroxy efavirenz, respectively. However, in cultures treated with efavirenz neither 8-hydroxy efavirenz nor any other known metabolite of efavirenz was detectable. These data demonstrate that cultured rat astrocytes efficiently accumulate, but not metabolize, efavirenz and 8-hydroxy efavirenz and that the observed chronic stimulation of glycolysis is mediated by both efavirenz and 8-hydroxy efavirenz.


Assuntos
Fármacos Anti-HIV/toxicidade , Astrócitos/efeitos dos fármacos , Benzoxazinas/toxicidade , Encéfalo/citologia , Inibidores da Transcriptase Reversa/toxicidade , Alcinos , Animais , Animais Recém-Nascidos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Benzoxazinas/química , Benzoxazinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclopropanos , Glucose/metabolismo , Ácido Láctico/metabolismo , Ratos Wistar , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/metabolismo , Estereoisomerismo
8.
J Neurosci Res ; 93(7): 1138-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25196479

RESUMO

The pyruvate analogue 3-bromopyruvate (3-BP) is an electrophilic alkylator that is considered a promising anticancer drug because it has been shown to kill cancer cells efficiently while having little toxic effect on nontumor cells. To test for potential adverse effects of 3-BP on brain cells, we exposed cultured primary rat astrocytes to 3-BP and investigated the effects of this compound on cell viability, glucose metabolism, and glutathione (GSH) content. The presence of 3-BP severely compromised cell viability and slowed cellular glucose consumption and lactate production in a time- and concentration-dependent manner, with half-maximal effects observed at about 100 µM 3-BP after 4 hr of incubation. The cellular hexokinase activity was not affected in 3-BP-treated astrocytes, whereas within 30 min after application of 3-BP the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inhibited, and cellular GSH content was depleted in a concentration-dependent manner, with half-maximal effects observed at about 30 µM 3-BP. The depletion of cellular GSH after exposure to 100 µM 3-BP was not prevented by the presence of 10 mM of the monocarboxylates lactate or pyruvate, suggesting that 3-BP is not taken up into astrocytes predominantly by monocarboxylate transporters. The data suggest that inhibition of glycolysis by inactivation of GAPDH and GSH depletion contributes to the toxicity that was observed for 3-BP-treated cultured astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Glicólise/efeitos dos fármacos , Piruvatos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Sobrevivência Celular/efeitos dos fármacos , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Glucose/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Hexoquinase/metabolismo , Ácido Láctico/metabolismo , Ratos , Ratos Wistar , Temperatura
9.
Neurochem Res ; 38(4): 732-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23341120

RESUMO

Antiretroviral protease inhibitors are a class of important drugs that are used for the treatment of human immunodeficiency virus infections. Among those compounds, ritonavir is applied frequently in combination with other antiretroviral protease inhibitors, as it has been reported to boost their therapeutic efficiency. To test whether ritonavir affects the viability and the glutathione (GSH) metabolism of brain cells, we have exposed primary astrocyte cultures to this protease inhibitor. Application of ritonavir in low micromolar concentrations did not compromise cell viability, but caused a time- and concentration-dependent loss of GSH from the cells which was accompanied by a matching increase in the extracellular GSH content. Half-maximal effects were observed for ritonavir in a concentration of 3 µM. The ritonavir-induced stimulated GSH export from astrocytes was completely prevented by MK571, an inhibitor of the multidrug resistance protein 1. In addition, continuous presence of ritonavir was essential to maintain the stimulated GSH export, since removal of ritonavir terminated the stimulated GSH export. Ritonavir was more potent to stimulate GSH export from astrocytes than the antiretroviral protease inhibitors indinavir and nelfinavir, but combinations of ritonavir with indinavir or nelfinavir did not further stimulate astrocytic GSH export compared to a treatment with ritonavir alone. The strong effects of ritonavir and other antiretroviral protease inhibitors on the GSH metabolism of astrocytes suggest that a chronic treatment of patients with such compounds may affect their brain GSH metabolism.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Glutationa/metabolismo , Ritonavir/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Combinação de Medicamentos , Inibidores da Protease de HIV/farmacologia , Indinavir/administração & dosagem , Indinavir/farmacologia , Nelfinavir/administração & dosagem , Nelfinavir/farmacologia , Propionatos/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Wistar , Ritonavir/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...