Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(2): 1035-1044, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38156819

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs), a newly discovered class of human endogenous complex lipids showing great promise for treating diabetes and inflammatory diseases, exist naturally in extremely low concentrations. This work reports a chemo-enzymatic approach for the comprehensive synthesis of phospholipids containing FAHFAs via sequential steps: hydratase-catalyzed hydration of unsaturated fatty acids to generate structurally diverse hydroxy fatty acids (HFAs), followed by the selective esterification of these HFAs with fatty acids mediated by secondary alcohol-specific Candida antarctica lipase A (CALA), resulting in the formation of a series of diverse FAHFA analogs. The final synthesis is completed through carbodiimide-based coupling of FAHFAs with glycerophosphatidylcholine. Optimal reaction conditions are identified for each step, and the substrate affinity of CALA, responsible for the catalytic mechanisms during FAHFA production, is evaluated through molecular docking. Compared to multistep lab-tedious chemical synthesis, this route, relying on natural building blocks and natural biocatalysts, is significantly facile, scalable, and highly selective, affording high yields (74-98 mol %) in each step for the construction of higher FAHFA-PC series (10/12/13-FAHFAs). The developed strategy aims to increase the availability of naturally occurring FAHFA species and provide the tools for the construction of versatile and novel analogs of FAHFA conjugates.


Assuntos
Ésteres , Fosfatidilcolinas , Humanos , Simulação de Acoplamento Molecular , Ésteres/química , Ácidos Graxos/química , Fosfolipídeos , Lipase
2.
iScience ; 26(7): 107075, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37448559

RESUMO

A sustainable and green approach was developed for the scalable synthesis of uncommon naturally occurring phospholipid species, Hemi-bis(monoacylglycero)phosphates (Hemi-BMPs) and bis(diacylglycero)phosphates (BDPs) via the phospholipase D (PLD) mediated transphosphatidylation. PLD from Streptomyces sp. showed great substrate promiscuity for both phospholipids from different biological sources, and alcohol donors with diverse regiochemistry; monoacylglycerols with diverse fatty acyl structures (C12-C22), affording 74-92 wt% yields in 2 h. Experimental results demonstrated that the reaction rate is rather independent of phosphatidyls but to a large extent governed by the size, shape and regiolocation of fatty acyls incorporated on the glycerol backbone, particularly for the regio-isomers of bulky diacylglycerols (Sn-1,3 or Sn-1,2), which displays great diversity. In addition, a plausible mechanism is proposed based on molecular simulations for an elaborated explanation of the reaction thermodynamic and kinetic favorability toward the synthesis of Hemi-BMPs and BDPs.

3.
Biotechnol Adv ; 60: 108025, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914627

RESUMO

Phospholipids are unique and versatile molecules, essential in a variety of biological systems. Moreover, their diverse structures and amphiphilic properties endorse their indispensable and unparalleled roles in research and industrial-related applications. However, in most cases of applications, naturally occurring phospholipids are either deficit in structural variety or insufficient in quantity; therefore, novel methods must be developed for the synthesis of new molecules or modification of natural structures. To identify sustainable and environmentally friendly approaches, this work reviews the latest progress in the acquisition of structurally defined phospholipids (designer phospholipids) from natural resources, including structural retrieval, redesign and synthesis of designer phospholipids via chemo-/enzymatic approaches. This review additionally highlights the opportunity to use biological systems to direct the production of specific phospholipid species through genetic engineering via defined metabolic pathways, and functionalization of natural phospholipids through synthetic modifications: substitutions, removals or additions of specific functional groups. A particular focus is given to the establishment of chemical and biological systems for the synthesis of isotopically labelled phospholipids for biomedical applications. The application of green chemistry principles in semi-synthesis of phospholipids including extended use of greener biocatalysts and diatomaceous earth and reduced use of hazardous and toxic solvents is also summarized.


Assuntos
Terra de Diatomáceas , Fosfolipídeos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Solventes
4.
Nat Commun ; 7: 10710, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26880271

RESUMO

Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This cellular superstructure can display increased resistance to antibiotics and cause serious, persistent health problems in humans. Here we describe a high-throughput in vitro screen to identify inhibitors of Acinetobacter baumannii biofilms using a library of natural product extracts derived from marine microbes. Analysis of extracts derived from Streptomyces gandocaensis results in the discovery of three peptidic metabolites (cahuitamycins A-C), with cahuitamycin C being the most effective inhibitor (IC50=14.5 µM). Biosynthesis of cahuitamycin C proceeds via a convergent biosynthetic pathway, with one of the steps apparently being catalysed by an unlinked gene encoding a 6-methylsalicylate synthase. Efforts to assess starter unit diversification through selective mutasynthesis lead to production of unnatural analogues cahuitamycins D and E of increased potency (IC50=8.4 and 10.5 µM).


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Oligopeptídeos/farmacologia , Acinetobacter baumannii/fisiologia , Antibacterianos/biossíntese , Proteínas de Bactérias/biossíntese , Vias Biossintéticas , Ensaios de Triagem em Larga Escala , Oligopeptídeos/biossíntese , Streptomyces
5.
ACS Med Chem Lett ; 6(11): 1122-7, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26617965

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common cancer affecting the oral cavity, and US clinics will register about 30,000 new patients in 2015. Current treatment modalities include chemotherapy, surgery, and radiotherapy, which often result in astonishing disfigurement. Cancers of the head and neck display enhanced levels of glucose-regulated proteins and translation initiation factors associated with endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Previous work demonstrated that chemically enforced UPR could overwhelm these adaptive features and selectively kill malignant cells. The threonyl-tRNA synthetase (ThRS) inhibitor borrelidin and two congeners were discovered in a cell-based chemical genomic screen. Borrelidin increased XBP1 splicing and led to accumulation of phosphorylated eIF2α and UPR-associated genes, prior to death in panel of OSCC cells. Murine embryonic fibroblasts (MEFs) null for GCN2 and PERK were less able to accumulate UPR markers and were resistant to borrelidin. This study demonstrates that UPR induction is a feature of ThRS inhibition and adds to a growing body of literature suggesting ThRS inhibitors might selectively target cancer cells.

6.
Chem Biol Drug Des ; 83(4): 440-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24636344

RESUMO

Proteins with expanded polyglutamine (polyQ) segments cause a number of fatal neurodegenerative disorders, including Huntington's disease (HD). Previous high-throughput screens in cellular and biochemical models of HD have revealed compounds that mitigate polyQ aggregation and proteotoxicity, providing insight into the mechanisms of disease and leads for potential therapeutics. However, the structural diversity of natural products has not yet been fully mobilized toward these goals. Here, we have screened a collection of ~11 000 natural product extracts for the ability to recover the slow growth of ΔProQ103-expressing yeast cells in 384-well plates (Z' ~ 0.7, CV ~ 8%). This screen identified actinomycin D as a strong inhibitor of polyQ aggregation and proteotoxicity at nanomolar concentrations (~50-500 ng/mL). We found that a low dose of actinomycin D increased the levels of the heat-shock proteins Hsp104, Hsp70 and Hsp26 and enhanced binding of Hsp70 to the polyQ in yeast. Actinomycin also suppressed aggregation of polyQ in mammalian cells, suggesting a conserved mechanism. These results establish natural products as a rich source of compounds with interesting mechanisms of action against polyQ disorders.


Assuntos
Produtos Biológicos/química , Ensaios de Triagem em Larga Escala , Modelos Biológicos , Peptídeos/genética , Animais , Produtos Biológicos/análise , Dactinomicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células PC12 , Peptídeos/química , Agregação Patológica de Proteínas/tratamento farmacológico , Ratos , Saccharomyces cerevisiae
7.
Angew Chem Int Ed Engl ; 51(45): 11258-62, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23042634

RESUMO

Capturing a coactivator, naturally: the natural products sekikaic acid and lobaric acid, isolated after a high-throughput screen of a structurally diverse extract collection, effectively target the dynamic binding interfaces of the GACKIX domain of the coactivator CBP/p300. These molecules are the most effective inhibitors of the GACKIX domain yet described and are uniquely selective for this domain.


Assuntos
Depsídeos/química , Lactonas/química , Salicilatos/química , Fatores de Transcrição de p300-CBP/química , Depsídeos/metabolismo , Lactonas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Salicilatos/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...