Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894478

RESUMO

Identification of different species of animals has become an important issue in biology and ecology. Ornithology has made alliances with other disciplines in order to establish a set of methods that play an important role in the birds' protection and the evaluation of the environmental quality of different ecosystems. In this case, the use of machine learning and deep learning techniques has produced big progress in birdsong identification. To make an approach from AI-IoT, we have used different approaches based on image feature comparison (through CNNs trained with Imagenet weights, such as EfficientNet or MobileNet) using the feature spectrogram for the birdsong, but also the use of the deep CNN (DCNN) has shown good performance for birdsong classification for reduction of the model size. A 5G IoT-based system for raw audio gathering has been developed, and different CNNs have been tested for bird identification from audio recordings. This comparison shows that Imagenet-weighted CNN shows a relatively high performance for most species, achieving 75% accuracy. However, this network contains a large number of parameters, leading to a less energy efficient inference. We have designed two DCNNs to reduce the amount of parameters, to keep the accuracy at a certain level, and to allow their integration into a small board computer (SBC) or a microcontroller unit (MCU).


Assuntos
Aves , Redes Neurais de Computação , Vocalização Animal , Animais , Aves/fisiologia , Aves/classificação , Vocalização Animal/fisiologia , Aprendizado de Máquina , Internet das Coisas , Inteligência Artificial , Aprendizado Profundo , Algoritmos
2.
ZDM ; 55(1): 35-48, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35891708

RESUMO

The COVID-19 pandemic led to the lockdown of schools in many countries, forcing teachers and students to carry out educational activities remotely. In the case of mathematics, developing remote instruction based on both synchronous and asynchronous technological solutions has proven to be an extremely complex challenge. Specifically, this was the case in topics such as word problem solving, as this domain requires intensive supervision and feedback from the teacher. In this piece of research, we present an evaluation of how technology is employed in the teaching of mathematics, with particular relevance to learning during the pandemic. For that purpose, we conducted a systematic review, revealing the almost complete absence of experiments in which the use of technology is not mediated by the teacher. These results reflect a pessimistic vision within the field of mathematics education about the possibilities of learning when the student uses technology autonomously. Bringing good outcomes out of a bad situation, the pandemic crisis may represent a turning point from which to start directing the research gaze towards technological environments such as those mediated by artificial intelligence. As an example, we provide a study illustrating to what extent intelligent tutoring systems can be cost-effective compared to one-to-one human tutoring and mathematic learning-oriented solutions for intensive supervision in the teaching of word problem solving, especially appropriate for remote settings. Despite the potential of these technologies, the experience also showed that student socioeconomic level was a determining factor in the participation rate with an intelligent tutoring system, regardless of whether or not the administration guaranteed students' access to technological resources during the COVID-19 situation.

3.
Sensors (Basel) ; 21(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806438

RESUMO

Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students' affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.


Assuntos
Emoções , Temperatura Cutânea , Frequência Cardíaca , Humanos
4.
Sensors (Basel) ; 19(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288378

RESUMO

Existing correlations between features extracted from Electroencephalography (EEG) signals and emotional aspects have motivated the development of a diversity of EEG-based affect detection methods. Both intra-subject and inter-subject approaches have been used in this context. Intra-subject approaches generally suffer from the small sample problem, and require the collection of exhaustive data for each new user before the detection system is usable. On the contrary, inter-subject models do not account for the personality and physiological influence of how the individual is feeling and expressing emotions. In this paper, we analyze both modeling approaches, using three public repositories. The results show that the subject's influence on the EEG signals is substantially higher than that of the emotion and hence it is necessary to account for the subject's influence on the EEG signals. To do this, we propose a data transformation that seamlessly integrates individual traits into an inter-subject approach, improving classification results.


Assuntos
Eletroencefalografia/métodos , Emoções/fisiologia , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Nível de Alerta/fisiologia , Análise de Dados , Bases de Dados Factuais , Humanos , Máquina de Vetores de Suporte
5.
IEEE Trans Image Process ; 26(3): 1452-1465, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092543

RESUMO

In this paper, we present an effective algorithm to reduce the number of wraps in a 2D phase signal provided as input. The technique is based on an accurate estimate of the fundamental frequency of a 2D complex signal with the phase given by the input, and the removal of a dependent additive term from the phase map. Unlike existing methods based on the discrete Fourier transform (DFT), the frequency is computed by using noise-robust estimates that are not restricted to integer values. Then, to deal with the problem of a non-integer shift in the frequency domain, an equivalent operation is carried out on the original phase signal. This consists of the subtraction of a tilted plane whose slope is computed from the frequency, followed by a re-wrapping operation. The technique has been exhaustively tested on fringe projection profilometry (FPP) and magnetic resonance imaging (MRI) signals. In addition, the performance of several frequency estimation methods has been compared. The proposed methodology is particularly effective on FPP signals, showing a higher performance than the state-of-the-art wrap reduction approaches. In this context, it contributes to canceling the carrier effect at the same time as it eliminates any potential slope that affects the entire signal. Its effectiveness on other carrier-free phase signals, e.g., MRI, is limited to the case that inherent slopes are present in the phase data.

6.
IEEE Trans Image Process ; 25(6): 2601-2609, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27071171

RESUMO

Quality-based 2D phase unwrapping algorithms provide one of the best tradeoffs between speed and quality of results. Their robustness depends on a quality map, which is used to build a path that visits the most reliable pixels first. Unwrapping then proceeds along this path, delaying unwrapping of noisy and inconsistent areas until the end, so that the unwrapping errors remain local. We propose a novel quality measure that is consistent, technically sound, effective, fast to compute, and immune to the presence of a carrier signal. The new measure combines the benefits of both the quality-guided and the residue-based phase unwrapping approaches. The quality map is justified from the two different theoretical points of view. Exhaustive tests on a variety of artificially generated and real 2D wrapped phase signals illustrate its potential usefulness in the field of fringe projection profilometry.

7.
Appl Opt ; 54(34): 10073-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836663

RESUMO

In phase unwrapping residues are points of locally inconsistent phase that occur within a wrapped-phase map, which are usually regarded as being problematic for phase-unwrapping algorithms. Real phase maps typically contain a number of residues that are approximately proportional to the subsequent difficulty in unwrapping the phase distribution. This paper suggests the radical use of the discrete Fourier transform to actually increase the number of residues in 2D phase-wrapped images that contain discontinuities. Many of the additional residues that are artificially generated by this method are located on these discontinuities. For example, in fringe projection systems, such phase discontinuities may come from physical discontinuity between different parts of the object, or by shadows cast by the object. The suggested technique can improve the performance of path independent phase-unwrapping algorithms because these extra residues simplify the process of setting the branch cuts in the wrapped image based on the distance to the nearest residue. The generated residues can also be used to construct more reliable quality maps and masks. The paper includes an initial analysis upon simulated phase maps and goes on to verify the results on a real experimental wrapped-phase distribution.

8.
Appl Opt ; 49(10): 1780-8, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20357860

RESUMO

Relatively recent techniques that produce phase volumes have motivated the study of three-dimensional (3D) unwrapping algorithms that inherently incorporate the third dimension into the process. We propose a novel 3D unwrapping algorithm that can be considered to be a generalization of the minimum spanning tree (MST) approach. The technique combines characteristics of some of the most robust existing methods: it uses a quality map to guide the unwrapping process, a region growing mechanism to progressively unwrap the signal, and also cut surfaces to avoid error propagation. The approach has been evaluated in the context of noncontact measurement of dynamic objects, suggesting a better performance than MST-based approaches.

9.
Appl Opt ; 48(32): 6313-23, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19904332

RESUMO

We present a hybrid three-dimensional (3D) unwrapping algorithm that combines the strengths of two other fast and robust existing techniques. In particular, a branch-cut surface algorithm and a path-following method have been integrated in a symbiotic way, still keeping execution times within a range that permits their use in real-time applications that need a relatively fast solution to the problem. First, branch-cut surfaces are calculated, disregarding partial residue loops that end at the boundary of the 3D phase volume. These partial loops are then used to define a quality for each image voxel. Finally, unwrapping proceeds along a path determined by a minimum spanning tree (MST). The MST is built according to the quality of the voxels and avoids crossing the branch-cut surfaces determined at the first step. The resulting technique shows a higher robustness than any of the two methods used in isolation. On the one hand, the 3D MST algorithm benefits from the branch-cut surfaces, which endows it with a higher robustness to noise and open-ended wraps. On the other hand, incorrectly placed surfaces due to open loops at the boundaries in the branch-cut surface approach disappear.

10.
Opt Lett ; 34(19): 2994-6, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19794793

RESUMO

We propose a three-dimensional phase unwrapping technique that uses the Hungarian algorithm to join together all the partial residual loops that may occur in a wrapped phase volume. Experimental results have shown that the proposed algorithm is more robust and reliable than other well-known three-dimensional phase unwrapping algorithms. Additionally, the proposed algorithm is fast in terms of computational complexity, which makes it suitable for practical applications.

11.
Appl Opt ; 48(23): 4582-96, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19668273

RESUMO

In this paper we propose a novel hybrid three-dimensional phase-unwrapping algorithm, which we refer to here as the three-dimensional best-path avoiding singularity loops (3DBPASL) algorithm. This algorithm combines the advantages and avoids the drawbacks of two well-known 3D phase-unwrapping algorithms, namely, the 3D phase-unwrapping noise-immune technique and the 3D phase-unwrapping best-path technique. The hybrid technique presented here is more robust than its predecessors since it not only follows a discrete unwrapping path depending on a 3D quality map, but it also avoids any singularity loops that may occur in the unwrapping path. Simulation and experimental results have shown that the proposed algorithm outperforms its parent techniques in terms of reliability and robustness.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Óptica e Fotônica , Algoritmos , Inteligência Artificial , Simulação por Computador , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Imagens de Fantasmas , Linguagens de Programação , Software , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA