Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mutat Res Genet Toxicol Environ Mutagen ; 786-788: 87-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26212297

RESUMO

In the international validation study of the in vivo rat alkaline comet assay (comet assay), the Japanese Center for the Validation of Alternative Methods (JaCVAM) provided three coded chemicals to BioReliance, 1,3-dichloropropene, ethionamide and busulfan, to be tested in a combined in vivo comet/micronucleus assay. Induction of DNA damage (comet) in liver, stomach and jejunum (1,3-dichloropropene only) cells, and induction of MNPCEs in bone marrow, were examined in male Sprague-Dawley (Hsd:SD) rats following oral administration of the test chemical for three consecutive days. A dose range finding (DRF) test was performed with each chemical to determine the maximum tolerated dose (MTD). Based on the results of the DRF test; 1,3-dichloropropene was tested at 50, 100 and 200 mg/kg/day; ethionamide was tested at 125, 250 and 500 mg/kg/day, and busulfan was tested at 10, 20 and 40 mg/kg/day. The results indicated that 1,3-dichloropropene induced DNA damage only in liver cells at all three test article doses, while no effects were observed in the stomach and jejunum cells. Additionally, it did not increase MNPCEs in the bone marrow. 1,3-Dichloropropene was concluded to be negative in the MN assay but positive in the comet assay. Ethionamide did not induce DNA damage in liver. However, in stomach, statistically significant decreases (although still within historical range) in % tail DNA at all test article doses compared to the vehicle control were observed. There was no increase in MNPCEs in the bone marrow. Thus, ethionamide was concluded to be negative in the comet/MN combined assay. Busulfan did not induce DNA damage in any of the organs tested (liver and stomach) but it did induce a significant increase in MNPCEs in the bone marrow. Busulfan was concluded to be negative in the comet assay but positive in the MN assay.


Assuntos
Ensaio Cometa/métodos , Testes para Micronúcleos/métodos , Administração Oral , Compostos Alílicos/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Bussulfano/toxicidade , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etionamida/toxicidade , Hepatócitos/efeitos dos fármacos , Hidrocarbonetos Clorados , Fígado/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Estômago/efeitos dos fármacos
2.
Environ Mol Mutagen ; 52(9): 711-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976072

RESUMO

As part of the Stage 3 of the Pig-a international trial, we evaluated 7,12-dimethylbenz(a)anthracene (DMBA) for induction of Pig-a gene mutation using a 28-day repeat dose study design in Sprague-Dawley rats. In the same study, chromosomal damage in peripheral blood and primary DNA damage in liver were also investigated by the micronucleus (MN) assay and the Comet assay, respectively. In agreement with previously published data (Dertinger et al., [2010]: Toxicol Sci 115:401-411), DMBA induced dose-dependent increases of CD59-negative erythrocytes/reticulocytes and micronucleated reticulocytes (MN-RETs). However, there was no significant increase in DNA damage in the liver cells when tested up to 10 mg/kg/day, which appears to be below the maximum tolerated dose. When tested up to 200 mg/kg/day in a follow-up 3 dose study, DMBA was positive in the liver Comet assay. Additionally, we evaluated diethylnitrosamine (DEN), a known mutagen/hepatocarcinogen, for induction of Pig-a mutation, MN and DNA damage in a 28-day study. DEN produced negative results in both the Pig-a mutation assay and the MN assay, but induced dose-dependent increases of DNA damage in the liver and blood Comet assay. In summary, our results demonstrated that the Pig-a mutation assay can be effectively integrated into repeat dose studies and the data are highly reproducible between different laboratories. Also, integration of multiple genotoxicity endpoints into the same study not only provides a comprehensive evaluation of the genotoxic potential of test chemicals, but also reduces the number of animals needed for testing, especially when more than one in vivo genotoxicity tests are required.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Dietilnitrosamina/toxicidade , Proteínas de Membrana/genética , Testes de Mutagenicidade , Mutagênicos/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/ultraestrutura , Antígenos CD59/genética , Calibragem , Ensaio Cometa/métodos , Ensaio Cometa/normas , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Citometria de Fluxo , Laboratórios/normas , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Masculino , Testes para Micronúcleos/métodos , Testes para Micronúcleos/normas , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Mutação , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Reticulócitos/ultraestrutura , Medição de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...