Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stroke ; 55(4): 1015-1024, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38275117

RESUMO

BACKGROUND: The dynamics of blood clot (combination of Hb [hemoglobin], fibrin, and a higher concentration of aggregated red blood cells) formation within the hematoma of an intracerebral hemorrhage is not well understood. A quantitative neuroimaging method of localized coagulated blood volume/distribution within the hematoma might improve clinical decision-making. METHODS: The deoxyhemoglobin of aggregated red blood cells within extravasated blood exhibits a higher magnetic susceptibility due to unpaired heme iron electrons. We propose that coagulated blood, with higher aggregated red blood cell content, will exhibit (1) a higher positive susceptibility than noncoagulated blood and (2) increase in fibrin polymerization-restricted localized diffusion, which can be measured noninvasively using quantitative susceptibility mapping and diffusion tensor imaging. In this serial magnetic resonance imaging study, we enrolled 24 patients with acute intracerebral hemorrhage between October 2021 to May 2022 at a stroke center. Patients were 30 to 70 years of age and had a hematoma volume >15 cm3 and National Institutes of Health Stroke Scale score >1. The patients underwent imaging 3×: within 12 to 24 (T1), 36 to 48 (T2), and 60 to 72 (T3) hours of last seen well on a 3T magnetic resonance imaging system. Three-dimensional anatomic, multigradient echo and 2-dimensional diffusion tensor images were obtained. Hematoma and edema volumes were calculated, and the distribution of coagulation was measured by dynamic changes in the susceptibilities and fractional anisotropy within the hematoma. RESULTS: Using a coagulated blood phantom, we demonstrated a linear relationship between the percentage coagulation and susceptibility (R2=0.91) with a positive red blood cell stain of the clot. The quantitative susceptibility maps showed a significant increase in hematoma susceptibility (T1, 0.29±0.04 parts per millions; T2, 0.36±0.04 parts per millions; T3, 0.45±0.04 parts per millions; P<0.0001). A concomitant increase in fractional anisotropy was also observed with time (T1, 0.40±0.02; T2, 0.45±0.02; T3, 0.47±0.02; P<0.05). CONCLUSIONS: This quantitative neuroimaging study of coagulation within the hematoma has the potential to improve patient management, such as safe resumption of anticoagulants, the need for reversal agents, the administration of alteplase to resolve the clot, and the need for surgery.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral Hemorrágico/complicações , Imagem de Tensor de Difusão , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/complicações , Imageamento por Ressonância Magnética/métodos , Hematoma/complicações , Coagulação Sanguínea , Hemoglobinas , Fibrina
2.
Brain Connect ; 13(8): 498-507, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097789

RESUMO

Objective: The primary aim of the research was to compare the impact of postischemic and hemorrhagic stroke on brain connectivity and recovery using resting-state functional magnetic resonance imaging. Methods and Procedures: We serially imaged 20 stroke patients, 10 with ischemic stroke (IS) and 10 with intracerebral hemorrhage (ICH), at 1, 3, and 12 months (1M, 3M, and 12M) after ictus. Data from 10 healthy volunteers were obtained from a publically available imaging data set. All functional and structural images underwent standard processing for brain extraction, realignment, serial registration, unwrapping, and denoising using SPM12. A seed-based group analysis using CONN software was used to evaluate the default mode network and the sensorimotor network connections by applying bivariate correlation and hemodynamic response function weighting. Results: In comparison with healthy controls, both IS and ICH exhibited disrupted interactions (decreased connectivity) between these two networks at 1M. Interactions then increased by 12M in each group. Temporally, each group exhibited a minimal increase in connectivity at 3M compared with 12M. Overall, the ICH patients exhibited a greater magnitude of connectivity disruption compared with IS patients, despite a significant intrasubject reduction in hematoma volume. We did not observe any significant correlation between change in connectivity and recovery as measured on the National Institutes of Health Stroke Scale (NIHSS) at any time point. Conclusions: These findings demonstrate that the largest changes in functional connectivity occur earlier (3M) rather than later (12M) and show subtle differences between IS and ICH during recovery and should be explored further in larger samples.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Mapeamento Encefálico/métodos
3.
J Natl Compr Canc Netw ; 20(11): 1193-1202.e6, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36351333

RESUMO

Recurrent and anaplastic pleomorphic xanthoastrocytoma (r&aPXA) is a rare primary brain tumor that is challenging to treat. Two-thirds of PXA tumors harbor a BRAF gene mutation. BRAF inhibitors have been shown to improve tumor control. However, resistance to BRAF inhibition develops in most cases. Concurrent therapy with MEK inhibitors may improve tumor control and patient survival. In this study, we identified 5 patients diagnosed with BRAF-mutated PXA who received BRAF and MEK inhibitors over a 10-year interval at our institution. Patient records were evaluated, including treatments, adverse effects (AEs), outcomes, pathology, next-generation sequencing, and MRI. The median age was 22 years (range, 14-66 years), 60% male, and 60% anaplastic PXA. Median overall survival was 72 months (range, 19-112 months); 1 patient died of tumor-related hemorrhage while off therapy, and the other 4 experienced long-term disease control (21, 72, 98, and 112 months, respectively). Dual BRAF/MEK inhibitors were well tolerated, with only grade 1-2 AEs, including rash, neutropenia, fatigue, abdominal discomfort, and diarrhea. No grade 3-5 AEs were detected. A literature review was also performed of patients diagnosed with BRAF-mutated PXA and treated with BRAF and/or MEK inhibitors through August 2021, with a total of 32 cases identified. The median age was 29 years (range, 8-57 years) and the median PFS and OS were 8.5 months (range, 2-35 months) and 35 months (range, 10-80 months), respectively. The most common AEs were grade 1-2 fatigue and skin rash. Results of this case series and literature review indicate that dual-drug therapy with BRAF and MEK inhibitors for r&aPXA with BRAF V600E mutation may delay tumor progression without unexpected AEs.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Neoplasias Encefálicas/patologia , Fadiga , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mutação , Recidiva Local de Neoplasia , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética , Adolescente , Pessoa de Meia-Idade , Idoso
4.
Front Neurol ; 12: 764718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917017

RESUMO

In most patients with intracerebral hemorrhage (ICH), the hematoma and perihematomal area decrease over the subsequent months but patients continue to exhibit neurological impairments. In this serial imaging study, we characterized microstructural and neurophysiological changes in the ICH-affected brain tissues and collected the National Institute of Health Stroke Scale (NIHSS) and modified Rankin Score (mRS), two clinical stroke scale scores. Twelve ICH patients were serially imaged on a 3T MRI at 1, 3, and 12 months (M) after injury. The hematoma and perihematomal volume masks were created and segmented using FLAIR imaging at 1 month which were applied to compute the susceptibilities (χ), fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF) in the same tissues over time and in the matching contralesional tissues. At 3 M, there was a significant (p < 0.001) reduction in hematoma and perihematomal volumes. At 1 M, the χ, FA, and CBF were decreased in the perihematomal tissues as compared to the contralateral side, whereas MD increased. In the hematomal tissues, the χ increased whereas FA, MD, and CBF decreased as compared to the contralesional area at 1 M. Temporally, CBF in the hematoma and perihematomal tissues remained significantly (p < 0.05) lower compared with the contralesional areas whereas MD in the hematoma and χ in the perihematomal area increased. The NIHSS and mRS significantly correlated with hematoma and perihematomal volume but not with microstructural integrity. Our serial imaging studies provide new information on the long-term changes within the brain after ICH and our findings may have clinical significance that warrants future studies.

5.
Stem Cells Transl Med ; 10(7): 943-955, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33689219

RESUMO

Bone marrow mononuclear cells (MNCs) attenuate secondary degeneration and enhance recovery in stroke animal models. In a nonrandomized clinical trial, we imaged 37 patients with stroke: 17 patients treated with MNCs (treated) and 20 patients who received standard of care (nontreated) at 1, 3, and 12 months onset of stroke on 3.0T MRI system. Three-dimensional anatomical and diffusion tensor images were obtained. The integrity of the corticospinal tract was assessed by measuring absolute and relative fractional anisotropy (FA) and mean diffusivity (MD) in the rostral pons (RP), posterior limb of the internal capsule, and corona radiata by drawing regions of interest. Infarct volume and stroke severity, which was assessed via the NIH Stroke Scale (NIHSS), were higher in the MNC group compared with the nontreated patients, which is a major limitation. Overall, the relative FA (rFA) of the nontreated patients exhibited continued reduction and an increase in relative MD (rMD) from 1 to 12 months, whereas despite larger infarcts and higher severity, treated patients displayed an increase in rFA from 3 to 12 months and no change in rMD. Contrary to the nontreated group, the treated patients' rFA was also significantly correlated (P < .05) with NIHSS score in the RP at all time points, whereas rMD at the last two.


Assuntos
Transplante de Medula Óssea , Neuroimagem , Tratos Piramidais , Acidente Vascular Cerebral , Células da Medula Óssea , Imagem de Tensor de Difusão , Humanos , Tratos Piramidais/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
6.
Front Neurol ; 10: 460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133966

RESUMO

Glioblastoma is the deadliest primary malignant brain neoplasm, and despite the availability of many treatment options, its prognosis remains somber. Enhancement detected by magnetic resonance imaging (MRI) was considered the best imaging marker of tumor activity in glioblastoma for decades. However, its role as a surrogate marker of tumor viability has changed with the appearance of new treatment regimens and imaging modalities. The antiangiogenic therapy created an inflection point in the imaging assessment of glioblastoma response in clinical trials and clinical practice. Although BEV led to the improvement of enhancement, it did not necessarily mean tumor response. The decrease in the enhancement intensity represents a change in the permeability properties of the blood brain barrier, and presumably, the switch of the tumor growth pattern to an infiltrative non-enhancing phenotype. New imaging techniques for the assessment of cellularity, blood flow hemodynamics, and biochemistry have emerged to overcome this hurdle; nevertheless, designing tools to assess tumor response more accurately, and in so doing, improve the assessment of response to standard of care (SOC) therapies and to novel therapies, remains challenging.

7.
Front Neurol ; 10: 154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890995

RESUMO

Purpose: Ongoing post-stroke structural degeneration and neuronal loss preceding neuropsychological symptoms such as cognitive decline and depression are poorly understood. Various substructures of the limbic system have been linked to cognitive impairment. In this longitudinal study, we investigated the post-stroke macro- and micro-structural integrity of the limbic system using structural and diffusion tensor magnetic resonance imaging. Materials and Methods: Nineteen ischemic stroke patients (11 men, 8 women, average age 53.4 ± 12.3, range 18-75 years), with lesions remote from the limbic system, were serially imaged three times over 1 year. Structural and diffusion-tensor images (DTI) were obtained on a 3.0 T MRI system. The cortical thickness, subcortical volume, mean diffusivity (MD), and fractional anisotropy (FA) were measured in eight different regions of the limbic system. The National Institutes of Health Stroke Scale (NIHSS) was used for clinical assessment. A mixed model for multiple factors was used for statistical analysis, and p-values <0.05 was considered significant. Results: All patients demonstrated improved NIHSS values over time. The ipsilesional subcortical volumes of the thalamus, hippocampus, and amygdala significantly decreased (p < 0.05) and MD significantly increased (p < 0.05). The ipsilesional cortical thickness of the entorhinal and perirhinal cortices was significantly smaller than the contralesional hemisphere at 12 months (p < 0.05). The cortical thickness of the cingulate gyrus at 12 months was significantly decreased at the caudal and isthmus regions as compared to the 1 month assessment (p < 0.05). The cingulum fibers had elevated MD at the ipsilesional caudal-anterior and posterior regions compared to the corresponding contralesional regions. Conclusion: Despite the decreasing NIHSS scores, we found ongoing unilateral neuronal loss/secondary degeneration in the limbic system, irrespective of the lesion location. These results suggest a possible anatomical basis for post stroke psychiatric complications.

8.
Front Neurol ; 10: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858820

RESUMO

Purpose: Cell-based therapy offers new opportunities for the development of novel treatments to promote tissue repair, functional restoration, and cerebral metabolic balance. N-acetylasperate (NAA), Choline (Cho), and Creatine (Cr) are three major metabolites seen on proton magnetic resonance spectroscopy (MRS) that play a vital role in balancing the biochemical processes and are suggested as markers of recovery. In this preliminary study, we serially monitored changes in these metabolites in ischemic stroke patients who were treated with autologous bone marrow-derived mononuclear cells (MNCs) using non-invasive MRS. Materials and Methods: A sub-group of nine patients (3 male, 6 female) participated in a serial MRS study, as part of a clinical trial on autologous bone marrow cell therapy in acute ischemic stroke. Seven to ten million mononuclear cells were isolated from the patient's bone marrow and administered intravenously within 72 h of onset of injury. MRS data were obtained at 1, 3, and 6 months using a whole-body 3.0T MRI. Single voxel point-resolved spectroscopy (PRESS) was obtained within the lesion and contralesional gray matter. Spectral analysis was done using TARQUIN software and absolute concentration of NAA, Cho, and Cr was determined. National Institute of Health Stroke Scale (NIHSS) was serially recoreded. Two-way analysis of variance was performed and p < 0.05 considered statistically significant. Results: All metabolites showed statistically significant or clear trends toward lower ipsilesional concentrations compared to the contralesional side at all time points. Statistically significant reductions were found in ipsilesional NAA at 1M and 3M, Cho at 6M, and Cr at 1M and 6M (p < 0.03), compared to the contralesional side. Temporally, ipsilesional NAA increased between 3M and 6M (p < 0.01). On the other hand, ipsilesional Cho showed continued decline till 6M (p < 0.01). Ipsilesional Cr was stable over time. Contralesional metabolites were relatively stable over time, with only Cr showing a reduction 3M (p < 0.02). There was a significant (p < 0.03) correlation between ipsilesional NAA and NIHSS at 3M follow-up. Conclusion: Serial changes in metabolites suggest that MRS can be applied to monitor therapeutic changes. Post-treatment increasing trends of NAA concentration and significant correlation with NIHSS support a potential therapeutic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...